• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 21 (4) 2015, 221-227

Optimal Cusum Control Chart for Censored Reliability Data with Log-logistic Distribution

Sadeghpour Gildeh Bahram, Taghizadeh Maryam

Department of Statistics, Faculty of Mathematical Science
Ferdowsi University of Mashhad, Mashhad, Iran
*E-mail: sadeghpour@um.ac.ir m.taghizadeh@stu.umz.ac.ir

Received:

Received: 30 October 2014; revised: 09 October 2015; accepted: 20 October 2015; published online: 16 December 2015

DOI:   10.12921/cmst.2015.21.04.006

Abstract:

The goal of this work is to detect any potentially harmful change in a process. The reliability tests are assumed to
generate type-I right-censored data following a log-logistic distribution with scale parameter (η) and shape parameter (β). For this purpose, we have constructed a likelihood ratio based simultaneous cumulative sum (CUSUM) control chart that targets changes in both the failure mechanism and the characteristic life (the simultaneous CUSUM chart for detecting shifts in the shape and the scale parameters). This control chart displays best performance for combinations with larger positive or negative shifts in the shape parameter, signaling on average in 5 samples in an out-of-control situation, while targeting an in-control average run length of 370. The simultaneous CUSUM chart’s performance is highly dependent on the values of β, and on the interaction between them and the censoring rates and shift sizes.

Key words:

Average run length, Cumulative sum (CUSUM) chart, Likelihood ratio, Log-logistic distribution, Type-I right-censoring

References:

[1] W. Q. Meeker and L. Escobar, Statistical Methods for Relia-
bility Data, John Wiley and Sons, New York, NY 1998.
[2] D. M. Hawkins and D. H. Olwell, Cumulative Sum Charts
and Charting for Quality Improvement, Springer-Verlag, New
York, NY 1998.
[3] J. O’Quigley and L. Struthers, Survival models based upon
the logistic and log-logistic distributions, Computer Programs
in Biomedical Researches 15, 3-12 (1982).
[4] A. Ragab and J. Green, On order statistics from the log-logistic
distribution and their properties, Commun. Statist, Theory
and Meth. 13. 2713- 2724 (1984).
[5] S. Bennett, Progressive Censoring: Theory, Methods and Log-
logistic regression model for survival data, Applied Statistics
32, 165-171 (1983).
[6] E. Page, Continuous Inspection Schemes, Biometrika 41. 100-
115 (1954).
[7] D.C. Montgomery, Introduction to Statistical Quality Control,
5th edition, John Wiley and Sons, New York, NY 2004.
[8] G. Moustakides, Optimal Stopping Times for Detecting
Changes in Distributions, The Annals of Statistics 14(4), 1379-
1387 (1986).
[9] A. F. Bissell, CUSUM techniques for quality control (with
discussion), Applied Statistics 18, 1-30 (1969).
[10] D. A. Olteanu, Cumulative Sum Control Charts for Censored
Reliability Data, PhD thesis Faculty of the Virginia Polytech-
nic Institute and State University, Blacksburg, Virginia (2010).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST