• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 26 (1) 2020, 21–28

On the complex magnitude of Dirichlet beta function

Kawalec Artur

214 W Jennifer Ln, #6
Palatine, IL 60067, USA
E-mail: art.kawalec@gmail.com

Received:

Received: 10 February 2020; revised: 23 March 2020; accepted: 23 March 2020; published online: 29 March 2020

DOI:   10.12921/cmst.2020.0000005

Abstract:

In this article, we derive an expression for the complex magnitude of the Dirichlet beta function β(s) represented as a Euler prime product and compare with similar results for the Riemann zeta function. We also obtain formulas for β(s) valid for an even and odd kth positive integer argument and present a set of generated formulas for β(k) up to 11th order, including Catalan’s constant and compute these formulas numerically. Additionally, we derive a second expression for the complex magnitude of β(s) valid in the critical strip from which we obtain a formula for the Euler-Mascheroni constant expressed in terms of zeros of the Dirichlet beta function on the critical line. Finally, we investigate the asymptotic behavior of the Euler prime product on the critical line.

Key words:

Dirichlet beta, Euler prime product, Euler-Mascheroni constant, Riemann zeta

References:

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, 9th printing, New York (1964).
[2] H.M. Edwards, Riemann’s Zeta Function, Dover Publications, Mineola, New York (1974).
[3] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford Science Publications (2008).
[4] A. Kawalec, Prime product formulas for the Riemann zeta function and related identities, math.GM/1901.09519v4 (2019).
[5] A. Kawalec, Asymptotic formulas for harmonic series in terms of a non-trivial zero on the critical line, Computational Methods in Science and Technology 25(4), 161–166 (2019).
[6] LMFDB- The L-functions and Modular Forms Database, http://www.lmfdb.org/ (2019).
[7] A. Patkowski, M. Wolf, Some Remarks on Glaisher-Ramanujan Type Integrals, Computational Methods in Science and Technology 22(2), 103–108 (2016).
[8] M. Wolf, 6+ infinity new expressions for the Euler-Mascheroni constant, math.NT/1904.09855 (2019).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_26_2_2020_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST