• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 21 (4) 2015, 211-219

Numerical Investigations of Taylor-Couette Flow Using DNS/SVV Method

Tuliszka-Sznitko Ewa *, Kiełczewski Kamil

Institute of Thermal Engineering, Poznań University of Technology
Poznań, ul. Piotrowo3, 60-965 Poznań
*E-mail: ewa.tuliszka-sznitko@put.poznan.pl

Received:

Received: 15 June 2015; revised: 30 September 2015; accepted: 30 September 2015; published online: 03 November 2015

DOI:   10.12921/cmst.2015.21.04.005

Abstract:

In the paper the authors present the results obtained during a numerical investigation (Direct Numerical Simulation/Spectral Vanishing Viscosity method – DNS/SVV) of a Taylor-Couette flow, i.e. the flow between two concentric disks and two concentric cylinders. The Taylor-Couette flow is one of paradigmatical systems in hydrodynamics, widely used for studying the primary instability, pattern formation, transitional flows and fully turbulent flows. Simultaneously, the flows in rotating cavities appear in numerous machines in the field of mechanics and chemistry, e.g., in cooling systems of gas turbines and axial compressors. In the paper, attention is focused on the laminar-turbulent transition region of the Taylor-Couette flow. The main purpose of the computations is to investigate the influence of different parameters (the aspect ratio, the end-wall boundary conditions, temperature gradient) on the flow structure and on flow characteristics.

Key words:

DNS, heat transfer, laminar-turbulent transition, Taylor-Couette flow, turbulence

References:

[1] K.T. Coughlin, P.S. Marcus, Modulated waves in
Taylor-Couette flow Part 1. Analysis. J. Fluid Mech.
234, 1-18 (1992).
[2] D.P. Lathrop, J. Fineberg, H.L. Swinney, Transition
to shear-driven turbulence in Couette-Taylor flow.
Phys. Rev. A 46, 6390-6405 (1992).
[3] Ch. Egbers, G. Pfister, Physics of rotating fluids, Lecture
Notes in Physics. Springer (2000).
[4] O. Czarny, E. Serre, P. Bontoux, R.M. Lueptow, Interaction
of wavy cylindrical Couette flow with endwalls.
Phys. Fluids 16, 1140-1148 (2004).
[5] S. Dong, Direct numerical simulation of turbulent
Taylor-Couette flow. J. Fluid Mech. 587, 373 (2007).
[6] U. Harlander, G. Wright, Ch. Egbers, Reconstruction
of the 3D flow field in a differentially heated
rotating annulus laboratory experiment. Geophysical
Research Abstracts 14 EGU2012-5368 (2012).
[7] H. Brauckmann, B. Eckhardt, Direct numerical simulations
of local and global torque in Taylor-Couette
fow up to Re D 30000. J. Fluid Mech 718, 398 (2013).
[8] W. Serre, J.P. Pulicani, A three dimensional pseudospectral
method for convection in rotating cylinder.
J. Computers & Fluids 30, 491 (2001).
[9] E. Tuliszka-Sznitko, A. Zieli´nski, W. Majchrowski,
LES of the non-isothermal transition flow in rotating
cavity, Int. J. Heat and Fluid Flow 30, 534 (2009).
[10] E. Tuliszka-Sznitko, A. Zieli´nski, W. Majchrowski,
Large eddy simulation of non-isothermal flow in rotor/
stator cavity. Proceedings of Int. Sym. On Heat
Transfer in Gas Turbine Systems, Antalya, CD-ROM,
pp.1-14, (2009).
[11] I.E. Tadmor, Convergence of spectral methods for
nonlinear conservation laws. SIAM, J. Numerical
Analysis, 26, 30 (1989).
[12] E. Severac, E. Serre, A spectral viscosity LES for the
simulation of turbulent flows within rotating cavities.
J. Comp. Phys. 226, 2, 1234 (2007).
[13] K. Kielczewski, E. Tuliszka-Sznitko, Numerical
study of the flow structure and heat transfer in rotating
cavity with and without jet. Arch. Mech. 65, 527
(2013).
[14] S. Sarra, Chebyshev Pseudospectral Methods for
Conservation Laws with Source Terms and Application
to Multiphase Flow. PhD Thesis, Morgantown,
West Virginia (2002).
[15] K. Kiełczewski, E. Tuliszka-Sznitko, P. Bontoux,
Numerical investigation of the Taylor-Couette and
Batchelor flows with heat transfer: physics and numerical
modeling. J. of Physics CS, 530, 1-8 (2014).
[16] K.A. Cliffe, T. Mullin, A numerical and experimental
study of anomalous modes in the Taylor experiment.
J. Fluid Mech. 153, 243-258 (1985).
[17] B. Bansch, Ch. Egbers, O. Meincke, N. Scurtu, Taylor
Couette System with Asymmetric Boundary Conditions.
Universitat Bremen, Zentrum fur Thenomathematik,
Report 0004 (2000).
[18] T. Mullin, C. Blohm, Bifurcation phenomena in a
Taylor-Couette flow with asymmetric boundary conditions.
Phys. Fluids 13, 136 (2001).
[19] J. Jeong, F. Hussain, On the identification of a vortex.
J. Fluid Mech. 285, 69 (1995).
[20] P. Chakraborty, S. Balachandar, R.J. Adrian, On
the relationships between local vortex identification
schemes. J. Fluid Mech. 535, 202 (2005).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    x-default
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST