• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 19 (1) 2013, 47-57

New Virtual Porous Carbons Based on Carbon EDIP Potential and Monte Carlo Simulations

Furmaniak Sylwester

Physicochemistry of Carbon Materials Research Group, Department of Chemistry,
N. Copernicus University, Gagarin St. 7, 87-100 Toruń, Poland
E-mail: e-mail: sf@chem.umk.pl

Received:

(Received: 26 July 2012; revised: 20 February 2013; accepted: 20 February 2013; published online: 1 March 2013)

DOI:   10.12921/cmst.2013.19.01.47-57

OAI:   oai:lib.psnc.pl:426

Abstract:

Using simple Metropolis Monte Carlo simulations, the series of virtual porous carbons (VPCs) is generated. During the computations, the carbon EDIP potential is employed. Structures in the series have systematically changing porosity due to the differences in the carbon density. The obtained VPCs are similar to the model proposed by Harris et al., but they do not show its main drawback, because they contain curved fullerene-like sheets, which are interconnected and form one three-dimensional structure. The porosity of VPCs is characterised using a simple geometrical method proposed by Bhattacharya and Gubbins. In order to confirm the reality of the obtained new model carbons and their usefulness for modelling of adsorption phenomena, Monte Carlo simulations of argon adsorption on them are performed. The obtained isotherms are analysed using standard adsorption methods like s-plots, adsorption potential distributions curves and Dubinin-Astakhov model. The results reveal a close relationship between the systematic changes in the porosity and the adsorption properties. The observed regularities correspond with experimental observations and theoretical studies.

Key words:

carbon EDIP potential, computer modelling, Monte Carlo simulations, virtual porous carbons

References:

[1] M. J. Biggs and A. Buts, Virtual porous carbons: what they are and what they can be used for, Mol. Simul. 32, 579-593 (2006).
[2] P. A. Gauden, A. P. Terzyk and S. Furmaniak, Modele budowy w˛egla aktywnego wczoraj – dzisiaj – jutro, Wiadomo´sci Chemiczne 62, 403-447 (2008).
[3] A. P. Terzyk, S. Furmaniak, P. A. Gauden, P. J .F. Harris and P. Kowalczyk, Virtual porous carbons, in: J.M.D. Tascón (ed.) Novel Carbon Adsorbents, Elsevier, ch. 3, 2012.
[4] M. J. Biggs, A. Buts and D. Williamson, Molecular simulation evidence for solidlike adsorbate in complex carbonaceous micropore structures, Langmuir 20, 5786-5800, (2004).
[5] M. J. Biggs, A. Buts and D. Williamson, Absolute assessment of adsorption-based porous solid characterization methods: comparison methods, Langmuir 20, 7123-7138 (2004).
[6] Q. Cai, A. Buts, M. J. Biggs and N. A. Seaton, Evaluation of methods for determining the pore size distribution and pore-network connectivity of porous carbons, Langmuir 23, 8430-8440 (2007).
[7] Q. Cai, A. Buts, N. A. Seaton and M. J. Biggs, A pore network model for diffusion in nanoporous carbons: validation by molecular dynamics simulation, Chem. Eng. Sci. 63, 3319-3327 (2008).
[8] D. D. Do and H. D. Do, Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data, J. Phys. Chem. B 110, 17531-17538 (2006).
[9] D. D. Do, D. Nicholson and H. D. Do, Heat of adsorption and density distribution in slit pores with defective walls: GCMC simulation studies and comparison with experimental data, Appl. Surf. Sci. 253, 5580-5586 (2007).
[10] G. R. Birkett and D. D. Do, On the physical adsorption of gases on carbon materials from molecular simulation, Adsorption 13, 407-424 (2007).
[11] A. Wongkoblap and D. D. Do, Characterization of Cabot non-graphitized carbon blacks with a defective surface model: adsorption of argon and nitrogen, Carbon 45, 1527-1534 (2007).
[12] L. F. Herrera, D. D. Do and G. R. Birkett, Comparative simulation study of nitrogen and ammonia adsorption on graphitized and nongraphitized carbon blacks. J. Colloid Interface Sci. 320, 415-422 (2008).
[13] G. R. Birkett and D. D. Do: Characteristic heats of adsorption for slit pore and defected pore models, Langmuir 24, 4853-4856 (2008).
[14] L. F. Herrera and D. D. Do, Effects of surface structure on the molecular projection area. Adsorption of argon and nitrogen onto defective surfaces, Adsorption 15, 240-246 (2009).
[15] P. J. F. Harris and S. C. Tsang: High-resolution electron microscopy studies of non-graphitizing carbons, Philos. Mag. A 76, 667-677 (1997).
[16] P. J. F. Harris, Structure of non-graphitising carbons, Int. Mater. Rev. 42, 206-218 (1997).
[17] P. J. F. Harris, A. Burian and S. Duber, High-resolution electron microscopy of a microporous carbon, Philos. Mag. Lett. 80, 381-386 (2000).
[18] P. J. F. Harris, New perspectives on the structure of graphitic carbons, Crit. Rev. Solid State Mater. Sci. 30, 235-253 (2005).
[19] P. J. F. Harris, Z. Liu and K. Suenaga, Imaging the atomic structure of activated carbon, J. Phys.: Condens. Matt. 20, 362201 (2008).
[20] P. J. F. Harris, Fullerene-related structure of nongraphitizing carbons, in: A. P. Terzyk, P. A. Gauden and P. Kowalczyk (eds.) Carbon Materials – Theory and Practice, Research Signpost, Kerala, India, p. 1-14, 2008.
[21] P. J. F. Harris, Z. Liu and K. Suenaga, Imaging the structure of activated carbon using aberration corrected TEM. J. Phys.: Conf. Ser. 241, 012050 (2010).
[22] T. Petersen, I. Yarovsky, I. Snook, D. G. McCulloch and G. Opletal, Structural analysis of carbonaceous solids using an adapted reverse Monte Carlo algorithm, Carbon 41, 2403-2411 (2003).
[23] G. Opletal, T. C. Petersen, D. G. McCulloch, I. K. Snook and I. Yarovsky, The structure of disordered carbon solids studied using a hybrid reverse Monte Carlo algorithm, J. Phys.: Condens. Matt. 17, 2605-2616 (2005).
[24] S. K. Jain, R. J. M. Pellenq, J. P. Pikunic and K. E. Gubbins, Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method, Langmuir 22, 9942-9948 (2006).
[25] S. K. Jain, K. E. Gubbins, R. J. M. Pellenq and J. P. Pikunic, Molecular modeling and adsorption properties of porous carbons, Carbon 44, 2445-2451 (2006).
[26] B. Coasne, S. K. Jain, L. Naamar and K. E. Gubbins, Freezing of argon in ordered and disordered porous carbon, Phys. Rev. B 76, 085416 (2007).
[27] B. Coasne, C. Alba-Simionesco, F. Audonnet, G. Dosseh and K. E. Gubbins, Adsorption, structure and dynamics of benzene in ordered and disordered porous carbons, Phys. Chem. Chem. Phys. 13, 3748-3757 (2011).
[28] J. C. Palmer and K. E. Gubbins, Atomistic models for disordered nanoporous carbons using reactive force fields, Microporous Mesoporous Mater. 154, 24-37 (2012).
[29] P. Kowalczyk, P. A. Gauden and A. P. Terzyk, Structural properties of amorphous diamond-like carbon: percolation, cluster, and pair correlation analysis. RSC Adv. 2, 4292-4298 (2012).
[30] R. C. Powles, N. A. Marks and D. W. M. Lau, Selfassembly of sp2-bonded carbon nanostructures from amorphous precursors, Phys. Rev. B 79, 075430 (2009).
[31] A. Kumar, R. F. Lobo and N. J. Wagner, Grand canonical Monte Carlo simulation of adsorption of nitrogen and oxygen in realistic nanoporous carbon models, AIChE J. 57, 1496-1505 (2011).
[32] L. J. Peng and J. R. Morris, Structure and hydrogen adsorption properties of low density nanoporous carbons from simulations, Carbon 50, 1394-1406 (2012).
[33] A. P. Terzyk, S. Furmaniak, P. A. Gauden, P. J. F. Harris, R. P. Wesołowski and P. Kowalczyk, Virtual porous carbon (VPC) models: application in the study of fundamental activated carbon properties by molecular simulations, J. F. Kwiatkowski (ed.) Activated Carbon: Classifications, Properties and Applications, Nova Science Publishers, New York, ch. 8, 2011.
[34] A. P. Terzyk, S. Furmaniak, P. A. Gauden, P. J. F. Harris, J. Włoch and P. Kowalczyk, Hyper-parallel tempering Monte Carlo simulations of Ar adsorption in new models of microporous non-graphitizing activated carbon: effect of microporosity, J. Phys.: Condens. Matt. 19, 406208 (2007).
[35] A. P. Terzyk, S. Furmaniak, P. J. F. Harris, P. A. Gauden, J. Włoch, P. Kowalczyk and G. Rychlicki, GCMC simulations of Ar adsorption in new model of nongraphitizing activated carbon. How realistic is the pore size distribution calculated from adsorption isotherms using standard methods?, Phys. Chem. Chem. Phys. 9, 5919-5929 (2007).
[36] A. P. Terzyk, S. Furmaniak, P. A. Gauden, P. J. F. Harris and J. Włoch, Testing isotherm models and recovering empirical relationships for adsorption in microporous carbons using virtual carbon models and grand canonical Monte Carlo simulations, J. Phys.: Condens. Matt. 20, 385212 (2008).
[37] S. Furmaniak, A. P. Terzyk, P. A. Gauden, P. J. F. Harris and P. Kowalczyk, Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N2 and CO2 adsorption isotherms? Simulation results for a realistic carbon model, J. Phys.: Condens. Matt. 21, 315005 (2009).
[38] A. P. Terzyk, P. A. Gauden, S. Furmaniak, R. P. Wesołowski and P. J. F. Harris, Molecular dynamics simulation insight into the mechanism of phenol adsorption at low coverages from aqueous solutions on microporous carbons, Phys. Chem. Chem. Phys. 12, 812-817 (2010).
[39] S. Furmaniak, A. P. Terzyk, P. A. Gauden, P. J. F. Harris and P. Kowalczyk, The influence of carbon surface oxygen groups on Dubinin-Astakhov equation parameters calculated from CO2 adsorption isotherm, J. Phys.: Condens. Matt. 22, 085003 (2010).
[40] P. A. Gauden, A. P. Terzyk, S. Furmaniak, P. J. F. Harris and P. Kowalczyk, BET surface area of carbonaceous adsorbents – verification using geometric considerations on virtual porous carbon models, Appl. Surf. Sci. 256, 5204-5209 (2010).
[41] A. P. Terzyk, S. Furmaniak, R. P. Wesołowski, P. A. Gauden and P. J. F. Harris, Methane storage in microporous carbons – effect of porosity and surface chemical composition tested on realistic carbon model, B. B. Saha and K. C. Ng (eds.) Advances in Adsorption Technology, Nova Science Publishers, New York, ch. 14, 2010.
[42] S. Furmaniak, A. P. Terzyk, P. A. Gauden P., Kowalczyk and P. J. F. Harris, The influence of the carbon surface chemical composition on Dubinin-Astakhov equation parameters calculated from SF6 adsorption data – grand canonical Monte Carlo simulation, J. Phys.: Condens. Matt. 23, 395005 (2011).
[43] P .Kowalczyk, P. A. Gauden, A. P. Terzyk, S. Furmaniak and P. J. F. Harris, Displacement of methane by coadsorbed carbon dioxide is facilitated in narrow carbon nanopores, J. Phys. Chem. C 116, 13640

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_25_2_2019_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST