• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 15 (1) 2009, 31-40

New approach to Genomics Experiments Taking Advantage of Virtual Laboratory System

Handschuh Luiza 2,3, Lawenda Marcin 1, Stępniak Piotr 2, Figlerowicz Marek 2, Stroiński Maciej 1, Węglarz Jan 1

1 Poznań Supercomputing and Networking Center
Noskowskiego 10, 61-704 Poznań, Poland
2 Institute of Bioorganic Chemistry PAS
Noskowskiego 12/14, 61-704 Poznań, Poland
3 Poznań University of Medical Sciences, Departament of Hematology
Szamarzewskiego 84, 60-569 Poznań, Poland
e-mail: vlab@man.poznan.pl

Received:

Received: 4 December 2008; published online: 25 March 2009

DOI:   10.12921/cmst.2009.15.01.31-40

OAI:   oai:lib.psnc.pl:661

Abstract:

Specialized software, on-line tools and computational resources are very common in contemporary science. One of the exemplary domain is genomics – a new branch of science that developed rapidly in the last decade. As the genome research is very complex, it must be supported by professional informatics. In a microarray field the following steps cannot be performed without computational work: design of probes, quantitative analysis of hybridization results, post-processing, and finally data storage and management. Here, the general aspects of virtual laboratory systems are presented together with perspectives of their implementation in genomics in order to automate and facilitate this area of research.

Key words:

genomics, remote instrumentation, virtual laboratory

References:

[1] PROGRESS – Polish Research on Grid Environment for SUN Servers. http://progress.psnc.pl/English/index.html.
[2] Virtual Laboratory PSNC. http://vlab.psnc.pl/ .
[3] B. R. Seavey, E. A. Farr, W. M. Westler and J. L. Markley, A Relational Database for Sequence-Specific Protein NMR Data. J. Biomolecular NMR 1, 217-236 (1991).
[4] NMR data-sets Bank: A repository for raw NMR data-sets. http://nmrb.cbs.cnrs.fr/index.html.
[5] Ch. Steinbeck, S. Krause and S. Kuhn, NMRShiftDB – Constructing a Free Chemical Information System with Open-Source Components. J. Chem. Inf. Comput. Sci. 43, 1733-1739 (2003).
[6] O. Yamamoto, K. Someno, N. Wasada, J. Hiraishi, K. Hayamizu, K. Tanabe, T. Tamura and M. Yanagisawa, An Integrated Spectral Data Base System Including IR, MS, 1H-NMR, 13C-NMR, ESR and Raman Spectra. Anal. Sci. 4, 233-239 (1988).
[7] The National Science Digital Library, http://nsdl.org/ .
[8] Digital Library for Earth System Education, http://www.dlese.org/ .
[9] Poznań Supercomputing and Networking Center, http://www.man.poznan.pl.
[10] Globus Toolkit. http://www.globus.org/toolkit/ .
[11] GRMS, http://www.gridlab.org/WorkPackages/wp-9/ .
[12] Bioconductor project. http://www.bioconductor.org/.
[13] TIGR TM4 Suite (including Spotfinder, MIDAS, MeV). http://www.tm4.org/.
[14] D. Gershon, More than gene expression. Nature 437, 1195-1198 (2005).
[15] D. N. Howbrook, A. M. van der Valk, M. C. O’Shaugnessy, D. K. Sarker, S. C. Baker and A. W. Lloyd, Developments in microarray technologies. Drug Discov. Today 8 (14), 642-651 (2003).
[16] S. Venkatasubbarao, Microarrays – status and prospects. Trends Biotechnol. 22, 630-637 (2004).
[17] V. Trevino, F. Falciani and H. A. Barrera-Saldaña, DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol. Med. 13, 527-541 (2007).
[18] O. Margalit, R. Somech, N. Amariglio and G. Rechavi, Microarray-based gene expression profiling of hematologic malignancies: basic concepts and clinical applications. Blood Rev. 19, 223-234 (2005).
[19] T. Haferlach, A. Kohlmann, S. Schnittger, M. Dugas, W. Hiddemann, W. Kern and C. Schoch, Global approach to the diagnosis of leukemia using gene expression profiling. Blood 4, 1189-1198 (2005).
[20] Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai and T. P. Speed, Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variations. Nucl. Acids Res. 4, e15 (2002).
[21] G. K. Smyth and T. P. Speed, Normalization of cDNA microarray data. Methods 31, 265-273 (2003).
[22] J. Quackenbush, Microarray data normalization and transformation. Nature Genet. Suppl. 32, 496-501 (2002).
[23] G. K. Smyth, Y. H Yang and T. Speed, Statistical issues in cDNA microarray data analysis. Methods Mol Biol. 224, 111-36 (2003).
[24] B. I. P. Rubinstein, McAuliffe, S. Cawley, M. Palaniswami, K. Ramamohanarao and T. P. Speed, Machine Learning in Low-level Microarray Analysis. ACM SIGKDD Explor.
Newsletters 5 (2), m14 (2003).
[25] L. A. Garraway and W. R. Sellers, Array-based approaches to cancer genome analysis. Drug Discov. Today 2 (2), 171-177 (2005).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_24_4_2018_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST