• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 18 (1) 2012, 39-44

Motion of Star-Branched Chains in a Nanochannel. A Monte Carlo Study

Romiszowski Piotr *, Sikorski Andrzej

Department of Chemistry, University of Warsaw
ul. Pasteura 1, 02-093 Warsaw, Poland
e-mail: prom@chem.uw.edu.pl

Received:

(Received: 17 February 2012; revised: 09 June 2012; accepted: 11 June 2012; published online: 26 June 2012)

DOI:   10.12921/cmst.2012.18.01.39-44

OAI:   oai:lib.psnc.pl:423

Abstract:

In order to determine the structure and dynamic properties of polymers systems in a random environment we developed and studied an idealized model. Properties of the model of confined linear and branched polymer chains were studied by means of the Monte Carlo method. Model chains were built of statistical segments and embedded to a simple cubic lattice. Then, the polymers were put into a tube formed by four impenetrable surfaces. A Metropolis-like sampling Monte Carlo algorithm was used to determine the static and dynamic properties of these model macromolecules. The influence of the size of the confinement (the tube diameter) and the chain length on polymer properties was studied. The universal behavior of confined polymer linear chains under consideration was found and discussed. The long-time (diffusion) dynamic properties of the system were also studied. The differences in the mobility of chains depending on the number of branches was shown and discussed – stars with an even number of arms exhibited the ballistic motion at certain conditions. The possible mechanism of the chain’s motion was discussed.

Key words:

branched polymers, lattice models, Monte Carlo method, porous media

References:

[1] E. Eisenriegler, Polymers Near Surfaces (World Scientific, Singapore 1993).
[2] M. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
[3] H.-W. Sun, S. Granick, Science 258, 1339 (1992).
[4] G. ten Brinke, D. Ausserre, G. Hadziioannou, J. Chem. Phys. 89, 4374 (1988).
[5] A. Milchev, K. Binder, Eur. Phys. J. B 3, 477 (1998).
[6] Y. Yoshida, Y. Hiwatari, Molec. Simul. 22, 91 (1999).
[7] D.V. Kuznetsov, A.C. Balazs, J. Chem. Phys. 113, 2479 (2000).
[8] N. Fatkulin, R. Kimmich, E. Fischer, C. Mattea, U. Beginn, M. Kroutieva, New J. Phys. 6, 46 (2004).
[9] J. Skolnick, A. Kolinski, Adv. Chem. Phys. 78, 223 (1990).
[10] A. Sikorski, P. Romiszowski, J. Chem. Phys. 116, 1731 (2002).
[11] A. Sikorski, P. Romiszowski, J. Chem. Phys. 123, 104905 (2005).
[12] K. Kremer, K. Binder, J. Chem. Phys. 81, 6381 (1984).
[13] Y.J. Sheng, M.C. Wang, J. Chem. Phys. 114, 4724 (2001).
[14] K. Avramova, A. Milchev, J. Chem. Phys. 124, 024909 (2006).
[15] J. Kalb, B. Chakraborty, J. Chem. Phys. 130, 025103 (2009).
[16] Z. Li, Y. Li, Y. Wang, Z. Sun, L. An, Macromolecules 43, 5896 (2010).
[17] R.M. Jendrejack, D.C. Schwartz, M.D. Graham, J.J. de Pablo, J. Chem. Phys. 119, 1165 (2003).
[18] J.L. Harden, M. Doi, J. Phys. Chem. 96, 4046 (1992).
[19] P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca 1979).
[20] G. Morrison, D. Thirumalai, J. Chem. Phys. 122, 194907 (2005).
[21] D.S. Cannell, F. Rondelez, Macromolecules 13, 1599 (1980).
[22] A. Sikorski, Macromol. Theory Simul. 2, 309 (1993).
[23] M. Schmiedeberg, V. Yu. Zaburdaev, H. Stark, J. Stat. Mech. P12020 (2009).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_24_1_2018_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST