• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 30 (1–2) 2024, 5–9

Mixing Rates of Ergodic Algorithms

Sprott Julien C.

University of Wisconsin-Madison
Department of Physics
Madison, Wisconsin 53706, USA
E-mail: sprott@physics.wisc.edu

Received:

Received: 8 January 2024; in final form: 30 January 2024; accepted: 31 January 2024; published online: 19 February 2024

DOI:   10.12921/cmst.2024.0000001

Abstract:

In response to the 2024 Snook Prize Problem, this paper compares the mixing rates of six simple numerical algorithms that produce an ergodic Gaussian distribution of position and momentum for a one-dimensional harmonic oscillator. A hundred thousand initial conditions spread uniformly over the constant energy surface are used for each of the six systems. The time-dependent kurtosis serves as a measure of the mixing rate. By this criterion, the most rapid mixing occurs for the signum thermostat system with an optimally chosen parameter value.

Key words:

ergodicity, Gibbs’ canonical distribution, mixing, Snook Prize

References:

[1] Wm.G. Hoover, C.G. Hoover, 2024 Snook Prize Problem: Ergodic Algorithms’ Mixing Rates, CMST 29, 65–69 (2023).

[2] J.W. Gibbs, Elementary Princples in Statistical Mechanics, Yale University Press (1902); Reprinted Dover Publications (2014).

[3]   J.C. Sprott, Ergodicity of One-Dimensional Oscillators with a Signum Thermostat, CMST 24, 169–176 (2018).

[4] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press (2007).

[5] P.K. Patra, Wm.G.  Hoover,  C.G.  Hoover,  J.C.  Sprott, The Equivalence of Dissipation from Gibbs’ Entropy Production with Phase-volume Loss in Ergodic Heat-conducting Oscillators, International Journal of Bifurcation and Chaos 26, 1650089 (2016).

[6] D. Tapias, A. Bravetti, D.P. Sanders, Ergodicity of One-dimensional Systems Coupled to the Logistic Thermostat, CMST 23, 11–18 (2017).

[7] Wm.G. Hoover, C.G. Hoover, Singly-thermostatted Ergodicity in Gibbs’ Canonical Ensemble and the 2016 Ian Snook Prize, CMST 22, 127–131 (2016).

[8] Wm.G. Hoover, B.L. Holian, Kinetic Moments Method for the Canonical Ensemble Distribution, Physics Letters A 211, 253–257 (1996).

[9] D. Kusnezov, A. Bulgac, W. Bauer, Canonical Ensembles from Chaos, Annals of Physics 204, 155–185 (1990).

[10] D. Kusnezov, A.  Bulgac,  Canonical  Ensembles  from Chaos II: Constrained Dynamical Systems, Annals of Physics 214, 180–218 (1992).

[11] G.J. Martyna, M.L. Klein, M. Tuckerman, Nosé-Hoover Chains: The Canonical Ensemble via Continuous Dynamics, The Journal of Chemical Physics 97, 2635–2643 (1992).

[12] J.C. Sprott, Wm.G. Hoover, C.G. Hoover, Elegant Simulations: From Simple Oscillators to Many-Body Systems, World Scientific (2023).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_27_4_2021_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST