• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 18 (1) 2012, 45-51

Material Storage Mechanism in Porous Nanocarbon – Comparison between Experiment and Simulation

Terzyk Artur P. 1,*, Gauden Piotr A. 1, Furmaniak Sylwester 1, Kowalczyk Piotr 2

1N. Copernicus University, Department of Chemistry,
Physicochemistry of Carbon Materials Research Group,
Gagarin St. 7, 87-100 Toruń, Poland,
*e-mail: aterzyk@chem.uni.torun.pl
url: http://www.chem.uni.torun.pl/~aterzyk/
2Nanochemistry Research Institute, Department of Chemistry,
Curtin University of Technology,
P.O. Box U1987, Perth, 6845 Western Australia, Australia

Received:

(Received: 14 May 2012; revised: 19 June 2012; accepted: 22 June 2012; published online: 29 June 2012)

DOI:   10.12921/cmst.2012.18.01.45-51

OAI:   oai:lib.psnc.pl:424

Abstract:

We present first MD simulation results of C60 adsorption inside a single-walled carbon nanohorn. The assumed carbon nanohorn model and the values of the force field parameters lead to relatively good agreement between simulation and experiment. We show that the confinement of water and ethanol inside a carbon nanohorn strongly changes the properties of confined liquids leading to a decrease in the number of hydrogen bonds, and diffusion coefficients in comparison to bulk. The appearance of C60 inside the nanohorn leads to further decrease in diffusion coefficients of confined solvents.

Key words:

adsorption, C60, fullerenes, molecular simulations, nanohorn

References:

[1] K. Ajima, M. Yudasaka, K. Suenaga, D. Kasuya, T. Azami, S. Iijima, Material storage mechanism in porous nanocarbon. Adv. Mater. 16, 397-401 (2004).
[2] E. Miyako, H. Nagata, K. Hirano, Y. Makita, T. Hirotsu, Photodynamic release of fullerenes from within carbon nanohorn. Chem. Phys. Lett. 456, 220-222 (2008).
[3] E. Lindahl, B. Hess, D. van der Spoel, GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306-317 (2001).
[4] A.P. Terzyk, P.A. Gauden, S. Furmaniak, R.P. Wesołowski, P.J.F. Harris, P. Kowalczyk, Adsorption from aqueous solutions on opened carbon nanotubes – organic compounds speed up delivery of water from inside. Phys. Chem. Chem. Phys. 11, 9341-9345 (2009).
[5] A.P. Terzyk, A. Pacholczyk, M. Wiśniewski, P.A. Gauden, Enhanced adsorption of paracetamol on closed carbon nanotubes by formation of nanoaggregates: Carbon nanotubes as potential materials in hot-melt drug deposition- experiment and simulation. J. Colloid Interface Sci. 376, 209-216 (2012).
[6] A.P. Terzyk, P.A. Gauden, S. Furmaniak, R.P. Wesołowski, P. Kowalczyk, Activated carbon immersed in water – the origin of linear correlation between enthalpy of immersion and oxygen content studied by molecular dynamics simulation. Phys. Chem. Chem. Phys. 12, 10701-10713 (2010).
[7] A.P. Terzyk, S. Furmaniak, P.A. Gauden, P.J.F. Harris, R.P. Wesołowski, P. Kowalczyk, Virtual porous carbon (VPC) models – application in study of fundamental activated carbon properties by molecular simulations. in: J.F. Kwiatkowski (ed.) Activated Carbon: Classification, Properties and Applications. Nova Science Publishers, New York, p. 355-376, 2011.
[8] R.P. Wesołowski, S. Furmaniak, A.P. Terzyk, P.A. Gauden, Simulating the effect of carbon nanotube curvature on adsorption of polycyclic aromatic hydrocarbons. Adsorption 17, 1-4 (2011).
[9] P.A. Gauden, A.P. Terzyk, R. Pieńkowski, S. Furmaniak, R.P. Wesołowski, P. Kowalczyk, Molecular dynamics of zigzag single walled carbon nanotubes immersion in water. Phys. Chem. Chem. Phys. 13, 5621-5629 (2011).
[10] R.P. Wesołowski, A.P. Terzyk, Pillared graphene as a gas separation membrane. Phys. Chem. Chem. Phys. 13, 17027-17029 (2011).
[11] A.P. Terzyk, P.A. Gauden, W. Zieliński, S. Furmaniak, R.P. Wesołowski, K.K. Klimek, First molecular dynamics simulation insight into the mechanism of organics adsorption from aqueous solutions on microporous carbons. Chem. Phys. Lett. 515, 102-108 (2011).
[12] J.L.F. Abascal, C. Vega, The water forcefield: Importance of dipolar and quadrupolar interactions. J. Phys. Chem. C 111, 15811-15822 (2007).
[13] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926-935 (1983).
[14] A. Alexiadis, S. Kassinos, Molecular simulation of water in carbon nanotubes. Chem. Rev. 108, 5014-5034 (1008).
[15] R.S. Taylor, R.L. Shields, Molecular-dynamics simulations of the ethanol liquid-vapor interface. J. Chem. Phys. 119, 12569-12576 (2003).
[16] T. Malaspina, E.E. Fileti, R. Rivelino, Structure and UVVis spectrum of C60 fullerene in ethanol: A sequential molecular dynamics/quantum mechanics study. J. Phys. Chem. B 111, 11935-11939 (2007).
[17] M. Yudasaka, S. Iijima, V.H. Crespi, Single-wall carbon nanohorns and nanocones. Topics in Applied Physics 111, 605-629 (2008).
[18] Y. Tao, D. Noguchi, Ch.-M. Yang, H. Kanoh, H. Tanaka, M. Yudasaka, S. Iijima, K. Kaneko, Conductive and mesoporous single-wall carbon nanohorn/organic aerogel composites. Langmuir 23, 9155-2157 (2007).
[19] W. Humphrey, A. Dalke, K. Schulten, VMD – visual molecular dynamics. J. Mol. Graphics 14, 33-38 (1996).
[20] http://www.ks.uiuc.edu/Research/vmd/.
[21] M.C. Gordillo, J. Marti, Hydrogen bond structure of liquid water confined in nanotubes. Chem. Phys. Lett. 329, 341- 345 (2000).
[22] L. Saiz, J.A. Padro, E. Guardia, Dynamics and hydrogen bonding in liquid ethanol. Mol. Phys. 97, 897-905 (1999).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST