• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 22 (4) 2016, 197-200

Limitations of Applicability of the Green-Kubo Approach for Calculating the Thermal Conductivity of a Confined Liquid in Computer Simulations

Hyżorek Krzysztof 1, Tretiakov Konstantin V. 1,2*

1 Institute of Molecular Physics
Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

2 President St. Wojciechowski PWSZ in Kalisz
Nowy Swiat 4, 62-800 Kalisz, Poland
*E-mail: kvt@ifmpan.poznan.pl

Received:

Received: 18 November 2016; revised: 24 November 2016; accepted: 25 November 2016; published online: 06 December 2016

DOI:   10.12921/cmst.2016.0000054

Abstract:

Thermal conductivity (λ) of the Lennard-Jones liquid in cylindrical nanochannels has been determined using the Green-Kubo (GK) approach in equilibrium Molecular Dynamics simulations. Good convergence of λ(τ ) has been observed along the nanochannel’s axis where the periodic boundary conditions are applied. However, it has been found that the
estimation of limiting value of λ(τ ) in the transverse direction, where walls confine the liquid, is ambiguous.

Key words:

Molecular Dynamics simulations, nanochannels, simple liquids, the Green-Kubo method, thermal conductivity

References:

[1] M. Bacon, S.J. Bradley, T. Nann, Graphene Quantum Dots,
Part. Part. Syst. Char. 31(4), 415 (2014).
[2] R. Kubo, J. Phys. Soc. Japan 12 (1957).
[3] R. Zwanzig, Time-Correlation Functions and Transport Coef-
ficients in Statistical Mechanics, Annu. Rev. Phys. Chem., 16
(1965).
[4] J. Petravic, P. Harrowell, Linear response theory for thermal
conductivity and viscosity in therms of boundary fluctuations,
Phys. Rew. E 71(061201) (2005).
[5] J. Petravic, P. Harrowell, An equilibrium calculation of ther-
mal transport coefficients between two planes of arbitrary sep-
aration in a condensed phase, J. Chem. Phys. 124, 0445112
(2006).
[6] J. Petravic, P. Harrowell, Equilibrium calculations of viscosity
and thermal conductivity across a solid-liquid interface using
boundary fluctuations, J. Chem. Phys. 128(194710) (2008).
[7] A.E. Giannakopoulos, F. Sofos, T.E. Karakasidis, A. Li-
akopoulos, Unified description of size effects of transport
properties of liquids flowing in nanochannels, Int. J. Heat
Mass Tran. (55), 5087-5092 (2012).
[8] M. Frank, D. Drikakis, N. Asproulis, Thermal conductivity
of nanofluid in nanochannels, Microfluid. Nanofluid. 19(5),
1011-1017 (2015).
[9] K. Hyżorek, K.V. Tretiakov, Thermal conductivity of liquid
argon in nanochannels from molecular dynamics simulations,
J. Chem. Phys. 144, 194507 (2016).
[10] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids,
J. W. Arrowsmith Ltd., Bristol, UK, 1987.
[11] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, Aca-
demic, New York, 2005.
[12] J. G. Kirkwood, The Statistical Mechanical Theory of Trans-
port Processes I. General Theory, J. Chem. Phys. 14 (1946).
[13] D. Heyes, Transport-Coefficients of Lennard-Jones Fluids – A
Molecular-Dynamics and Effective-Hard-Sphere Treatment,
Phys. Rev. B 37, 5677 (1988).
[14] K.V. Tretiakov, S. Scandolo, Thermal conductivity of solid
argon for molecular dynamics simulations, J. Chem. Phys.
120(8), 3765-3769 (2004).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_26_4_2020_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST