• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 27 (1) 2021, 29–35

Ion Distributions in Water/Graphene Interface: A Molecular Dynamics Study

Dweik Jalal 1,2*, Koabaz Mahmoud 1,2, Joumana Younis 2, Ghaddar Abbas 1

1 Lebanese University
Faculty of Science, Physics Department
Section 5, Nabatieh, Lebanon

2 Jinan University
Lebanon

*E-mail: jalal.dweik@ul.edu.lb

Received:

19 February 2021; revised: 24 March 2021; accepted: 26 March 2021; published online: 31 March 2021

DOI:   10.12921/cmst.2021.0000006

Abstract:

Classical Molecular Dynamics (MD) with non-polarizable force field is used to quantify the ions’ size effect on the confined electrolyte solution’s structure and dynamics by considering the series of sodium halides (NaX with X = F, Cl, Br, and I). Ions and water transport were simulated through a rigid and neutral atomistic carbon wall (graphene). The results showed that the solid surface has a major effect on the ions’ distribution in nano-aqueous solutions near interfaces. Cl, Br, and I tend to be repelled from the regions where the density of water is high, while F was found to be significantly solvate by water. The electrolyte solution dynamical properties, due to confinement, were also observed on the anions and cations pairing through determining the self-diffusion coefficient.

Key words:

graphene wall, ions size, molecular dynamics, surface effect

References:

[1] P. Gu, S. Zhang, X. Li, X. Wang, T. Wen, R. Jehan, A. Alsaedi, T. Hayat, Xi. Wang, Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution, Environmental Pollution 240, 493–505 (2018).

[2] S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials derived from metal-organic frameworks, Nature Reviews Materials 3, 17075 (2017).

[3] Q. Liu, Y. Wang, L. Dai, J. Yao, Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries, Advanced Materials 28, 3000–3006 (2016).

[4] J. Xu, Z. Cao, Y. Zhang, Z. Yuan, Z. Lou, X. Xu, X. Wang, A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism, Chemosphere 195, 351–364 (2018).

[5] P.S. Crozier, R.L. Rowley, Molecular dynamics simulation of continuous current flow through a model biological membrane channel, Phys. Rev. Lett. 86, 2467–2470 (2001).

[6] B. Roux, M. Karplus, Molecular dynamics simulations of the gramicidin channel, Annu. Rev. Biophys. Biomol. Struct. 23, 731–761 (1994).

[7] M. Jardat, B. Hribar-Lee, V. Vlachy, Self-diffusion of ions in charged nanoporous media, Soft Matter. 8, 954–964 (2012).

[8]  A.J.  Storm,  J.H.  Chen,  X.S.  Ling,  H.W.  Zandbergen, C. Dekker, Fabrication of solid-state nanopores with singlenanometre precision, Nature Mater. 2, 537–540 (2003).

[9] L.R. Forrest, M.S. Sansom, Membrane simulations: bigger and better?, Curr. Opin. Struct Biol. 10, 174–181 (2000).

[10] S.P. Crozier, D. Henderson, R. Rowley, D.D. Busath, Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics, J. Biophys. 81, 3077–3089 (2001).

[11] I.C. Bourg, C.I. Steefel, ZnO-Based Dye-Sensitized Solar Cells, J. Phys. Chem. C 116, 11413–11425 (2012).

[12] C. Boiteux, S. Kraszewski, C. Ramseyer, C. Girardet, Ion conductance vs. pore gating and selectivity in KcsA channel: modeling achievements and perspectives, J. Molecular Modeling 13, 699–713 (2007).

[13] A. Bo¸tan, B. Rotenberg, V. Marry, P. Turq, B. Noetinger, Hydrodynamics in Clay Nanopores, J. Phys. Chem. C 115, 16109–16115 (2011).

[14] M. Compoint, P. Carloni, C. Ramseyer, C. Girardet, Molecular dynamics study of the KcsA channel at 2.0-angstrom resolution: stability and concerted motions within the pore, Biochimica et Biophysica Acta – Biomembranes 1661, 26–39 (2004).

[15] B. Corry, T.W. Allen, S. Kuyucak, S.H. Chung, A model of calcium channels, Biochim. Biophys. Acta. 1509, 1–6 (2000).

[16] D. Horinek, R. Netz, Specific Ion Adsorption at Hydrophobic Solid Surfaces, Phys. Rev. Lett. 99, 226104 (2007).

[17] P. Jungwirth, D.J. Tobias, Specific Ion Effects at the Air/Water Interface, Chem. Rev. 106, 1259 (2006).

[18] D.L. McCaffrey, S.C. Nguyen, S.J. Cox, H. Weller, A.P. Alivisatos, P.L. Geissler, R.J. Saykally, Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water, PNAS 114, 13369–13373 (2017).

[19]  C.P. James, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD, J. Comp. Chem. 26, 1781–1802 (2005).

[20] L.X. Dang, T.S. Chang, Molecular Mechanism of Ion Binding to the Liquid/Vapor Interface of Water, J. Phys. Chem. B 106, 235–238 (2002).

[21] A. Alexiadis, S. Kassinos, Molecular simulation of water in carbon nanotubes, Chem. Rev. 108, 5014–5034 (2008).

[22]  C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K.E. Gubbins, R. Radhakrishnan, M.J. Sliwinska-Bartkowiak, Effect of confinement on freezing and melting, Phys.: Condens. Matter 18, 15–68 (2006).

[23] J. Dweik, B. Coasne, J. Palmeri, P. Jouanna, P. Gouze, Inner and subsurface distribution of water and ions in weakly and highly hydrophilic uncharged nanoporous materials: A molecular dynamics study of a confined NaI electrolyte solution, J. Phys. Chem. C 116, 726–737 (2011).

[24] G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414, 188–190 (2001).

[25] B. Mukherjee, P.K. Maiti, C. Dasgupta, A. Sood, Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings, ACS Nano 2, 1189 (2008).

[26] E.E. Fenn, D.B. Wong, M.D. Fayer, Water dynamics at neutral and ionic interfaces, Proc. Natl. Acad. Sci. U.S.A. 106, 15243–15248 (2009).

[27] D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature 437, 640–647 (2005).

[28] M. Schoen, J.H. Cushman, D.J. Diestler, C.L. Rhykerd, Fluid in microspores. II. Self-diffusion in a simple classical fluid in a silt pore, J. Chem. Phys. 88, 1394 (1988).

[29] D.J. Diestler, M. Schoen, A.W. Hertzner, J.H. Cushman, Fluids in microspores. III. Self-diffusion in a slit-pore with rough hard walls, J. Chem. Phys. 95, 5432 (1991).

[30] S.H. Krishnan, K.G. Ayappa, Modeling velocity autocorrelation functions of confined fluids: A memory function approach, J. Chem. Phys. 118, 690 (2003).

[31] B. Coasne, S.K. Jain, K.E. Gubbins, Adsorption, structure and dynamics of fluids in ordered and disordered models of porous carbons, Mol. Phys. 104, 3491–3499 (2006).

[32] T.W. Allen, S. Kuyucak, S.H. Chung, the effect of hydrophobic and hydrophilic channel walls on the structure and diffusion of water and ions, J. Chem. Phys. 111, 7985–7999 (1999).

[33] A. Berezhkovskii, G. Hummer, Single-file transport of water molecules through a carbon nanotube, Phys. Rev. Lett. 89, 064503 (2002).

[34] B. Mukherjee, P.K. Maiti, C. Dasgupta, A.K. Sood, Strong correlations and Fickian water diffusion in narrow carbon nanotubes, J. Chem. Phys. 126, 124704–124711 (2007).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_25_2_2019_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST