• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 24 (4) 2018, 235–247

From the Dynamic Lattice Liquid Algorithm to the Dedicated Parallel Computer – mDLL Machine

Jung Jarosław 1, Kiełbik Rafał 2, Rudnicki Kamil 2, Hałagan Krzysztof 1, Polanowski Piotr 1, Sikorski Andrzej 3*

1 Department of Molecular Physics, Technical University of Łódź
90-924 Łódź, Poland

2 Department of Electronics, Technical University of Łódź
90-924 Łódź, Poland

3 Department of Chemistry, University of Warsaw Pasteura 1
02-093 Warsaw, Poland

*E-mail: sikorski@chem.uw.edu.pl

Received:

Received: 13 November 2018; revised: 03 December 2018; accepted: 05 December 2018; published online: 24 December 2018

DOI:   10.12921/cmst.2018.0000054

Abstract:

The designing, production and testing of the mDLL machine led to the development of such a structure in which operational cells (e.g. KDLL) were located in the nodes of a three-dimensional torus network and the device was scalable. Thus, the future expansion of this device with additional Printed Circuit Boards (PCB) will not result in lengthened wire connections between Field-Programmable Gate Arrays (FPGA) or slow down the operation of the machine. The conducted tests confirmed the correctness of the adopted design assumptions and showed that by using mDLL one can effectively perform molecular simulations. Despite some structural shortcomings, the mDLL machine was a prototype that has already been sufficiently tested to allow the technology used in it to be used to build a device with a number of 1 million to 5 million KDLL cells. Such a device would already be suitable for simulating multi-particle systems with unprecedented speed.

Key words:

Field Programmable Gate Array, molecular simulations, parallel data processing, topology of the network connections

References:

[1] B.G.Fitch,A.Rayshubsky,M.Elftheriou,T.J.C.Ward,M.E. Giampapa, M.C. Pitman, J.W. Pitera, W.C. Swope, R.. Ger- main, Blue Matter: Scalling of N-body simulations to one atom per node, IBM J. Res & Dev, 52 145 (2008).
[2] X. Hu, L. Hong, M.D. Smith, T. Neusius, X. Cheng, J.C. Smith J., The Dynamics of Single Protein Molecules Is Non- Equilibrium and Self-Similar over Thirteen Decades in Time, Nature Physics 12, 171–174 (2016).
[3] W. Chen, E. De Schutter, Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers, Frontiers in Neuroinformatics,11:13, doi: 10.3389/fninf.2017.00013 (2017)
[4] P. Polanowski, Implementacja sieciowych modeli cieczy i polimerów w symulacjach opartych na obliczeniach równoległych, Rozprawa doktorska, Politechnika Łódzka, (2002).
[5] R.D. Jackson, A.J. Hoane Jr., Modular Infinitely Ex- tendable Three Dimensional Torus Packing Scheme for Parallel Processing, US Patent no. US005715391A, http://www.google.ch/patents/US5715391 (1998).
[6] T. Pakula, Collective dynamics in simple supercooled and polymer liquids, J. Mol. Liq. 86, 109-121 (2000).
[7] P. Polanowski, J.K. Jeszka, K. Krysiak, K. Matyjaszewski, Influence of intramolecular crosslinking on gelation in liv- ing copolymerization of monomer and divinyl cross-linker. Monte Carlo simulation studies, Polymer, 79, 171-178 (2015).
[8] P. Polanowski, J. Jung, R. Kiełbik, A. Napieralski, K. Lichy, Od algorytmu dynamicznej cieczy sieciowej do dedykowanego komputera równoległego, Przegla ̨d Elek- trotechniczny, 84, 69-73 (2008).
[9] J. Jung, Od wybranych zagadnien ́ elektroniki organicznej do uniwersalnej maszyny przeznaczonej do analizy zjawisk zachodza ̨cych w ge ̨stych układach wieloskładnikowych, Rozprawa habilitacyjna, Politechnika Łódzka (2016).
[10] J. Jung, P. Polanowski, R. Kiełbik, Special state machine based on Dynamic Lattice Liquid model, International Jour- nal of Engineering Science and Innovative Technology (IJE- SIT), 3, 360-367 (2014).
[11] J.Jung,P.Polanowski,R.Kiełbik,K.Hałagan,W.Zatorski, J. Ulan ́ski, A. Napieralski, T. Pakuła, A parallel machine with reduced number of connections between logical cir- cuits, (2016), EP Patent Application no. EP3079073A1,https://www.google.com/patents/EP3079073A1?cl=un (2016).
[12] G.G. Pachanek, N.P. Pitsianis, E.F. Barry, T.L. Draben- stott, Method and Apparatus for Manifold Array Processing, US Patent no. US6167502A, https://www.google.tl/patents/ US6167502 (2000).
[13] H.W. Daniel, Parallel Processor, EP Patent no. EP0501524A2.
[14] www.google.com.na/patents/EP0501524A2?cl=un (1992).
[15] R.S. Passint, G. Thorson, M.B. Galles, Hybrid Hyper- cube/Torus Architecture, US Patent no. US6230252B1, http:// www.google.ch/patents/US6230252 (2001).
[16] J. Jung, P. Polanowski, R. Kiełbik, K. Hałagan, W. Zatorski, J. Ulan ́ski, A. Napieralski, T. Pakuła, Panel z układami elektronicznymi i zestaw paneli, RP Patent no. P.405479, http://regserv.uprp.pl/register/application?number=P.405479 (2016).
[17] J. Jung, P. Polanowski, R. Kiełbik, K. Hałagan, W. Za- torski, J. Ulan ́ski, A. Napieralski, T. Pakuła, A panel with electronic circuits and a set of panels, EP Patent Application no. EP3079071A1, https://google.com/patents/ EP3079071A1?cl=en (2016).
[18] J. Jung, P. Polanowski, R. Kiełbik, K. Hałagan, W. Za- torski, J. Ulan ́ski, A. Napieralski, T. Pakuła, A parallel machine having operational cells located at nodes of a face centered lattice, EP Patent Application no. EP3079072A1, https://www.google.com.na/patents/EP3079072A1?cl=en (2016).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    x-default
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST