• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 24 (2) 2018, 155–158

Ergodic Isoenergetic Molecular Dynamics for Microcanonical-Ensemble Averages

Hoover Wm.G. , Hoover C.G.

Ruby Valley Research Institute
Highway Contract 60, Box 601, Ruby Valley, Nevada 89833, USA
E-mail: hooverwilliam@yahoo.com

Received:

Received: 25 June 2018; revised: 26 June 2018; accepted: 26 June 2018; published online: 30 June 2018

DOI:   10.12921/cmst.2018.0000035

Abstract:

Considerable research has led to ergodic isothermal dynamics which can replicate Gibbs’ canonical distribution for simple (small) dynamical problems. Adding one or two thermostat forces to the Hamiltonian motion equations can give an ergodic isothermal dynamics to a harmonic oscillator, to a quartic oscillator, and even to the “Mexican-Hat” (doublewell) potential problem. We consider here a time-reversible dynamical approach to Gibbs’ “microcanonical” (isoenergetic) distribution for simple systems. To enable isoenergetic ergodicity we add occasional random rotations to the velocities. This idea conserves energy exactly and can be made to cover the entire energy shell with an ergodic dynamics. We entirely avoid the Poincaré-section holes and island chains typical of Hamiltonian chaos. We illustrate this idea for the simplest possible two-dimensional example, a single particle moving in a periodic square-lattice array of scatterers, the “cell model”.

Key words:

algorithms, chaos, ergodicity, Lyapunov exponent

References:

[1] S. Nosé, A Molecular Dynamics Method for Simulation in the
Canonical Ensemble, Molecular Physics 52, 255-268 (1984).
[2] S. Nosé, A Unified Formulation of the Constant-Temperature
Molecular Dynamics Methods, Journal of Chemical Physics,
81, 511-519 (1984).
[3] Wm.G. Hoover, Canonical Dynamics: Equilibrium Phase-
Space Distributions, Physical Review A 31, 1695-1697 (1985).
[4] Wm.G. Hoover, B.L. Holian, Kinetic Moments Method for the
Canonical Ensemble Distribution, Physics Letters A 211, 253-
257 (1996).
[5] G.J. Martyna, M.L. Klein, M. Tuckerman, Nosé-Hoover Chains:
the Canonical Ensemble via Continuous Dynamics, The Journal
of Chemical Physics 97, 2635-2643 (1992).
[6] Wm. G. Hoover, C.G. Hoover, J.C. Sprott, Nonequilibrium Sys-
tems: Hard Disks and Harmonic Oscillators Near and Far from
Equilibrium, Molecular Simulation 42, 1300-1316 (2016).
[7] D. Tapias, A. Bravetti, D.P. Sanders, Ergodicity of One-
Dimensional Systems Coupled to the Logistic Thermostat, Com-
putational Methods in Science and Technology 23, 11-18 (2017)
arXiv 1611.05090.
[8] I. Shimada, T. Nagashima, A Numerical Approach to Ergodic
Problems of Dissipative Dynamical Systems, Progress of Theo-
retical Physics 61, 1605-1616 (1979).
[9] G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov
Characteristic Exponents for Smooth Dynamics Systems and
for Hamiltonian Systems; a Method for Computing All of Them,
Parts I and II: Theory and Numerical Application, Meccanica
15, 9-20 and 21-30 (1980).
[10] F. Ricci-Tersenghi, The Solution to the Challenge in ‘Time-
Reversible Random Number Generators’ arχiv 1305.1805
(2013).
[11] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.
Teller, E. Teller, Equation of State Calculations by Fast Comput-
ing Machines, The Journal of Chemical Physics 21, 1087-1092
(1953).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    x-default
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST