• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 30 (1–2) 2024, 11–16

Determination of Elastic Moduli of the r^(−12) Soft Disk Crystal by the Minimum Image Method

Tretiakov Konstantin V. 1,2*, Wojciechowski Krzysztof W. 1,2

1 Institute of Molecular Physics
Polish Academy of Sciences
M. Smoluchowskiego 17, 60-179 Poznań, Poland

2 Uniwersytet Kaliski im. Prezydenta Stanisława Wojciechowskiego
Wydział Politechniczny, Katedra Informatyki
Nowy Świat 4, 62-800 Kalisz, Poland

∗E-mail: tretiakov@ifmpan.poznan.pl

Received:

Received: 26 January 2024; revised: 14 February 2024; accepted: 15 February 2024; published online: 22 February 2024

DOI:   10.12921/cmst.2024.0000003

Abstract:

Elastic moduli of soft disk crystals close to the melting point have been evaluated by Monte Carlo simulations. The inverse-power potential has been used to model the interactions between particles. In calculations of the elastic moduli by the Parrinello-Rahman formalism, the long-range interactions between atoms have been taken into account using the minimum image method. The study shows that for systems consisting of around a hundred particles there are differences between the values of the elastic moduli obtained by the calculations using the minimum image method and those coming from the traditional approach. It has been found that the elastic moduli obtained by the simulations using the minimum image method even for as small as a hundred-particle systems are very close to these values at the thermodynamic limit N → ∞.

 

Key words:

elastic moduli, inverse-power potential, minimum image method, Monte Carlo simulation, soft disk crystal

References:

[1] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, Academic press, Amsterdam (2006).

[2] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford (1987).

[3] A.J.C. Ladd, Monte-Carlo simulation of water, Mol. Phys. 33, 1039 (1977).

[4] A.J.C. Ladd, Long-range dipolar interactions in computer simulations of polar liquids, Mol. Phys. 36, 463 (1978).

[5] K.V. Tretiakov, K.W. Wojciechowski, Quick and accurate estimation of the elastic constants using the minimum image method, Comput. Phys. Commun. 189, 77–83 (2015).

[6] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Applied Physics 52, 7182 (1981).

[7] M. Parrinello, A. Rahman, Strain fluctuations and elastic constants, J. Chem. Phys. 76, 2662 (1982).

[8] K.V. Tretiakov, K.W. Wojciechowski, Elastic properties of the degenerate crystalline phase of two-dimensional hard dimers, J. Non-Cryst. Solids 352, 4221 (2006).

[9] K.W. Wojciechowski, K.V. Tretiakov, M. Kowalik, Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions, Phys. Rev. E 67, 036121 (2003).

[10] K.V. Tretiakov, K.W. Wojciechowski, Elastic properties of soft disk crystals, Rev. Adv. Mater. Sci. 14, 104 (2007).

[11] J.Q. Broughton, G.H. Gilmer, J.D. Weeks, Molecular-dynamics study of melting in two dimensions. Inverse-twelfth-power potential, Phys. Rev. B 25, 4651 (1982).

[12]  N.   Metropolis,   A.W.   Rosenbluth,   M.N.   Rosenbluth, A.H. Teller, E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys. 21, 1087–1092 (1953).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_26_2_2020_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST