• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 16 (1) 2010, 13-18

Computational Solutions for the Korteweg–deVries Equation in Warm Plasma

El-Shewy Emad *, Abdelwahed Hesham G., Abd-El-Hamid Hamdi M.

Theoretical Physics Group
Faculty of Science, Mansoura University, Mansoura, Egypt
*e-mail: e_k_el_shewy@mans.edu.eg; emadshewy@yahoo.com

Received:

Received: 5 October 2009; revised: 2 May 2010; accepted: 6 May 2010; published online: 29 June 2010

DOI:   10.12921/cmst.2010.16.01.13-18

OAI:   oai:lib.psnc.pl:710

Abstract:

The reductive perturbation method has been employed to derive the Korteweg–deVries (KdV) equation for small but finite amplitude electrostatic ion-acoustic waves. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters to reveal different solutions, i.e. bell-shaped solitary pulses, rational pulses and solutions with singularity at a finite points called “blowup” solutions in addition to the propagation of explosive pulses. The result of the present investigation may be applicable to some plasma environments, such as ionosphere.

Key words:

explosive solutions, ion-acoustic waves, reductive perturbation, symbolic computations

References:

[1] G. Whitham, Linear and nonlinear waves. New York, Wiley (1974).
[2] R. Davidson, Methods in nonlinear plasma theory. New York, Academic Press (1972).
[3] S. K. El-Labany, J. Plasma Phys. 50, 495 (1993)..
[4] M. Sokała, J. Computational Methods in Science and Technology 14(2), 111 (2008).
[5] H. Washimi, T. Taniuti, J Phys Rev Lett. 17. 996 (1966).
[6] T. Taniuti, C. Wei, J Phys Soc Jpn 24, 491 (1968).
[7] S.A. Elwakil, E.K. El-Shewy, R. Sabry, Int. J. Nonlinear Sci. Numer. Simulation 5, 403 (2004).
[8] S.A. Elwakil, M.T. Attia, M.A. Zahran, E.K. El-Shewy, H.G. Abdelwahed, Z. Naturforsch. 61a, 316 (2006).
[9] M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering. Cambridge, Cambridge University Press (1991).
[10] W. Malfliet, Solitary wave solutions of nonlinear wave equations. American Journal of Physics 60(7), 650-654 (1992).
[11] E. Fan, Phys. Lett. A 277, 212 (2000).
[12] S.A. Elwakil, S.K. El-Labany, M.A. Zahran, R. Sabry, Phys. Lett. A 299, 179 (2002).
[13] M.A. Abdou, Applied Mathematics and Computation 190, 988-996 (2007).
[14] J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos, Solitons & Fractals 2007;34:1421.
[15] M.A. Abdou, Chaos Soliton Fractals 31, 95-104 (2007).
[16] M.A. Abdou, A. Elhanbaly, Communications in Nonlinear Science and Numerical Simulation 12, 1229-1241 (2007).
[17] E. Fan, Chaos, Solitons and Fractals 16, 819 (2003).
[18] W.M. Moslem, R. Sabry, U.M. Abdelsalam, I. Kourakis,
P.K. Shukla, New Journal of Physics 11, 033028 (2009).
[19] M. Adler, J. Moser, Commun. Math. Phys. 19, 1 (1978)

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_26_2_2020_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST