• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 15 (2) 2009, 177-183

Assembler Encoding Versus Connectivity Matrix Encoding in the Inverted Pendulum Problem with a Hidden State

Praczyk Tomasz

The Naval University, ul. Śmidowicza 69, Gdynia, Poland
e-mail: T.Praczyk@amw.gdynia.pl

Received:

Received: 5 January 2009; revised: 25 June 2009; accepted: 25 June 2009; published online: 2 September 2009

DOI:   10.12921/cmst.2009.15.02.177-183

OAI:   oai:lib.psnc.pl:673

Abstract:

Assembler Encoding is the Artificial Neural Network encoding method. To date, Assembler Encoding has been tested in the optimization problem and in the so-called predator-prey problem. The paper reports experiments in a next test problem, i.e. in the inverted pendulum problem. To compare Assembler Encoding with other Artificial Neural Network encoding methods in the experiments, two direct encodings were also tested.

Key words:

evolutionary neural networks

References:

[1] L. Baird III, Reinforcement Learning Through Gradient Descent. PhD thesis, Carnegie Mellon University, Pittsburgh (1999).
[2] P. Cichosz, Learning systems. WNT, Warsaw (2000).
[3] A. Cangelosi, D. Parisi and S. Nolfi, Cell division and migration in a genotype for neural networks. Network: computation in neural systems 5(4) 497-515 (1994).
[4] D. Curran and C. O’Riordan, Applying Evolutionary Computation to Designing Networks: A Study of the State of the Art. National University of Ireland, technical report NUIGIT- 111002 (2002).
[5] D. Floreano and J. Urzelai, Evolutionary robots with online self-organization and behavioral fitness. Neural Networks 13, 431-443 (2000).
[6] F. Gomez, J. Schmidhuber and R. Miikkulainen, Accelerated Neural Evolution through Cooperatively Coevolved Synapses. Journal of Machine Learning Research 9, 937-965 (2008).
[7] F. Gruau, Neural network Synthesis Using Cellular Encoding And The Genetic Algorithm. PhD Thesis, Ecole Normale Superieure de Lyon (1994).
[8] H. Kitano, Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4, 461-476 (1990).
[9] K. Krawiec and B. Bhanu, Visual Learning by Coevolutionary Feature Synthesis. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 35, 409-425 (2005).
[10] M.L. Littman and C.A. Szepesvari, Generalized Reinforcement-Learning Model: Convergence and Applications. In Proceedings of the Thirteenth International Conference on
Machine Learning 310-318 (1996).
[11] S. Luke and L. Spector, Evolving Graphs and Networks with Edge Encoding: Preliminary Report. In: Koza J.R., ed., Late Breaking Papers at the Genetic Programming
1996 Conference, (Stanford University, CA, USA, Stanford Bookstore, 1996) 117-124.
[12] M. Mandischer, Representation and Evolution of Neural Networks. In: Albrecht R.F., Reeves C.R., Steele U.C., ed., Artificial Neural Nets and Genetic Algorithms (Springer Verlag, New York, 1993) 643-649.
[13] G.F. Miller, P.M. Todd and S.U. Hegde, Designing Neural Networks Using Genetic Algorithms. Proceedings of the Third International Conference on Genetic Algorithms. 379-384 (1989).
[14] D.E. Moriarty, Symbiotic Evolution of Neural Networks in Sequential Decision Tasks. PhD thesis, The University of Texas at Austin, TR UT-AI97-257 (1997).
[15] S. Nolfi and D. Parisi, Growing neural networks. In: Langton C.G., ed., Artificial Life III, (Addison-Wesley, 1992).
[16] P. Nordin, W. Banzhaf and F. Francone, Efficient Evolution of Machine Code for {CISC} Architectures using Blocks and Homologous Crossover. Advances in Genetic Programming III, (Spector L., Langdon W., O’Reilly U. and Angeline P.) 275-299 (1999).
[17] M. Potter, The Design and Analysis of a Computational Model of Cooperative Coevolution. PhD thesis, George Mason University, Fairfax, Virginia (1997).
[18] M. Potter and K.A. De Jong, Evolving neural networks with collaborative species. In: Oren T.I., Birta L.G. (Eds.), Proceedings of the 1995 Summer Computer Simulation Conference, The Society of Computer Simulation 340-345 (1995).
[19] M.A. Potter and K.A. De Jong, A Cooperative Coevolutionary Approach to Function Optimization. The Third Parallel Problem Solving From Nature, Jerusalem, Israel, Springer-Verlag 249-257 (1994).
[20] M.A. Potter and K.A. De Jong, Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1-29 (2000).
[21] T. Praczyk, Evolving co-adapted subcomponents in Assembler Encoding. International Journal of Applied Mathematics and Computer Science 17(4) 2007.
[22] T. Praczyk, Procedure application in Assembler Encoding. Archives of Control Science 17(LIII), 1, 71-91 (2007).
[23] T. Praczyk, Modular Neural Networks in Assembler Encoding. Computational Methods in Science and Technology 14(1) (2008).
[24] O. Stanley and R. Miikkulainen, Evolving neural networks through augmenting topologies. Evolutionary Computation 10, 99-127 (2002).
[25] O. Stanley, Efficient Evolution of Neural Networks Through Complexification. PhD thesis, Department of Computer Science, The University of Texas at Austin, August 2004. Technical Report AI-TR-04-314.

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST