• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 12 (2) 2006, 143-147

Application of Mathematical Modeling in Survival Time Prediction for Females with Advanced Cervical Cancer Treated Radio-chemotherapy

Moczko Jerzy 1, Roszak Andrzej 2

1Chair and Department of Computer Science and Statistics
University of Medical Sciences in Poznań, Dąbrowskiego 79, 60-529 Poznań, Poland
e-mail: jmoczko@am.poznan.pl
2Wielkopolska Cancer Center, Garbary 15, 61-866 Poznań, Poland
e-mail: andrzej.roszak@wco.pl

Received:

Rec. 11 July 2005

DOI:   10.12921/cmst.2006.12.02.143-147

OAI:   oai:lib.psnc.pl:622

Abstract:

Clinical investigations yield huge amount of experimental data which need appropriate processing. High degree of their variability decreases quality of prognostic and classification results. Frequently problem of strong redundancy of variables incorporated into model occurs, produces computational instabilities and in multifactorial models makes the appropriate interpretation of obtained results hindered. In this paper we present the set of mathematical procedures used in comparative analysis of two treatment methods for patients with advanced cervical cancer: radiotherapy and combined treatment of ionizing irradiation and chemotherapy.

Key words:

cervical cancer, mathematical modeling, radio-chemotherapy, survival analysis

References:

[1] A. Roszak, Badania nad skutecznością radiochemioterapii chorych na zaawansowanego raka szyjki macicy, Rep. Pract. Oncol. Radiother. 9 (S1), 131-162 (2004).
[2] E. L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 53, 457-481 (1958).
[3] Encyclopedia of Biostatistics, ed. P. Armitage, T. Colton, J. Wiley & Sons, Ltd. (2005).
[4] E. A. Gehan, A generalized Wilcoxon test for comparing arbitrarily singly-censored samples, Biometrika, 52, 203-223 (1965a).
[5] R. Peto and J. Peto, Asymptotically efficient rank invariant procedures, Journal of the Royal Statistical Society, 135, 185-207 (1972).
[6] D. R. Cox and D. Oakes, Analysis of survival data, New York: Chapman & Hall (1984).
[7] T. Hastie, R. Tibshirani and J. Friedman, The elements of Statistical Learning. Data Mining, Inference and Prediction, Springer-Verlag NY (2001).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    x-default
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST