• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 22 (3) 2016, 143-152

Analytical Solutions of Classical and Fractional KP-Burger Equation and Coupled KdV Equation

Ghosh Uttam 1*, Sarkar Susmita 1**, Das Shantanu 2†

1 Department of Applied Mathematics, University of Calcutta, Kolkata, India
∗E-mail: uttam_math@yahoo.co.in, **susmita62@yahoo.co.in
2 Reactor Control Systems Design Section E & I Group BARC Mumbai India
†E-mail: shantanu@barc.gov.in

Received:

Received: 05 April 2016; accepted: 10 May 2016; published online: 24 August 2016

DOI:   10.12921/cmst.2016.0000016

Abstract:

Development of new analytical and numerical methods and their applications for solving non-linear partial differential equations (both classical and fractional) is a rising field of Applied Mathematical research because of its applications in Physical, Biological and Social Sciences. In this paper we have used a generalized Tanh method to find the exact solution of KP-Burger equation and coupled KdV equation. The fractional Sub-equation method has been used to find the solution of fractional KP-Burger equation and fractional coupled KdV equations. The exact solution obtained by the fractional sub-equation method reduces to classical solution when the order of fractional derivative tends to one. Finally numerical simulation has been done. The numerical simulation justifies that the solutions of two fractional differential equations reduce to shock solution for KP-Burger equation and soliton solution for coupled KdV equations when the order of derivative tends to one.

Key words:

coupled KdV equation, fractional differential equation, fractional sub-equation method, generalized tanh-method, Jumarie fractional derivative, KP-Burger equation

References:

[1] A.M.A. El-Sayed, M. Gaber, The adomian decomposition method for solving partial differential equations of fractal order in finite
domains, Phys. Lett. A 359(20):175-182 (2006).
[2] A.M.A. El-Sayed, S.H. Behiry, W.E. Raslan, Adomian’s decomposition method for solving an intermediate fractional advection-
dispersion equation, Comput. Math. Appl 59(5):1759-1765 (2010).
[3] S. Das. Functional Fractional Calculus 2nd Edition, Springer-Verlag 2011.
[4] J. Cang, Y. Tan, H. Xu and S. J. Liao, Series solutions of non-linear Riccati differential equations with fractional order, Chaos,
Solitons and Fractals 40, 1-9 (2009).
[5] J.H. He. Homotopy perturbation technique, Comput Methods. Appl. Mech. Eng. 178(3-4), 257-262 (1999).
[6] J.H. He, Inter. J. Non-Linear Mech. 35, 37-43 (2000).
[7] H. Jafari, S. Momani, Solving fractional diffusion and wave equations by modified homotopy perturbation method, Phys. Lett. A 370,
388-396 (2007).
[8] Z. Odibat and S. Momani, Appl. Math. Lett. 21, 194-199 (2008).
[9] L. Huibin, W. Kelin, Exact solutions for two nonlinear equations: I, J. Phys. A: Math. Gen. 23, 3923-3928 (1990).
[10] A.M. Wazwaz, The tanh method for travelling wave solutions of nonlinear equations, Applied Mathematics and Computation 154,
713-723 (2004).
[11] E. Fan, Extended Tanh-Function Method and Its Applications to Nonlinear Equations, Physics Letters A 277(4-5), 212-218 (2000).
[12] S. Zhang, W. Wang and J. Lin Tong. Electronic Journal of Theoretical Physics Exact Non-traveling Wave and Coefficient Function
Solutions for (2+1)-Dimensional Dispersive Long Wave Equations, 5(19), 177-190 (2008).
[13] T.B. Dinh, V.C. Long and K.W. Wojciechowski, Solitary waves in auxetic rods with quadratic nonlinearity: Exact analytical solutions
and numerical simulations, Phys. Status Solidi B 252(7),1587-1594 (2015).
[14] T. Bui Dinh, V. Cao Long, K. Dinh Xuan, and K.W. Wojciechowski, Computer simulation of solitary waves in a common or auxetic
elastic rod with both quadratic and cubic nonlinearities, Phys. Status Solidi B 249, 1386-1392 (2012).
[15] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA.
1999; 198.
[16] S. Zhang and H. Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 375,
1069 (2011).
[17] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non differentiable functions further results, Comput.
Math. Appl. 51(9-10), 1367-1376 (2006).
[18] U. Ghosh, S. Sengupta, S. Sarkar and S. Das, Analytic solution of linear fractional differential equation with Jumarie derivative in
term of Mittag-Leffler function, American Journal of Mathematical Analysis 3(2), 32-38 (2015).
[19] E. Fan, Y.C. Hon, Generalized tanh Method Extended to Special types of Non-linear equations, Z. Naturforsh 57, 692-700 (2002)

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    x-default
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST