• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 19 (1) 2013, 33-46

An application of graphical numerical accelerators in simulations of ion-transport through biological membranes

Górecki A.

Warsaw University of Life Sciences WULS-SGGW,
Nowoursynowska St. 159, 02-787 Warsaw, Poland
E-mail: adam_gorecki@sggw.pl

Received:

(Received: 27 October 2012; revised: 20 February 2013; accepted: 21 February 2013; published online: 28 February 2013)

DOI:   10.12921/cmst.2013.19.01.33-46

OAI:   oai:lib.psnc.pl:427

Abstract:

The modeling of ion-transport through biological membranes is important for understanding many life processes. The transmembrane potential and ion concentrations in the stationary state can be measured in in-vivo experiments. They can also be simulated within membrane models. Here we consider a basic model of ion transport that describes the time evolution of ion concentrations and potentials through a set of nonlinear ordinary differential equations. To reduce the computation time I have developed an application for simulation of the ion-flows through a membrane starting from an ensemble of initial conditions, optimized for a Graphical Processing Unit (GPU). The application has been designed for the CUDA (Compute Unified Device Architecture) technology. It is written in CUDA C programming language and runs on NVIDIA TESLA family of numerical accelerators. The calculation speed can be increased almost 1000 times compared with a sequential program running on the Central Processing Unit (CPU) of a typical PC.

Key words:

biological membranes, CUDA, differential equations integration, electrochemistry, TESLA

References:

[1] L. Stryer, Biochemistry. W. H. Freeman, StateplaceNew York, 1981.
[2] D. C. Gadsby, P. Vergani, L. Csanády, The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 7083, 477–83 (2006).
[3] I. Scheffer, S. Berkovic, Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain 120, 479–90 (1997).
[4] S. A. Goldstein, C. Miller, Mechanism of charybdotoxin block of a voltage gated K+ channel. Biophysical Journal 65, 1613–1619 (1993).
[5] S. Candia, M. L. Garcia, R. Latorre, Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)- activated K+ channel.Biophysical Journal 63, 583–590 (1992).
[6] R. Toczylowska-Maminska, K. Dolowy, Ion transporting proteins of human bronchial epithelium. Journal of Cellular Biochemistry 113, 426-432 (2012).
[7] C. V. Falkenberg, E. Jakobsson, A Biophysical Model for Integration of Electrical, Osmotic, and pH Regulation in the Human Bronchial Epithelium. Biophysical Journal 98,1476–1485 (2010).
[8] Y. Sohma, M. A. Gray, Y. Imai, B. E. Argent, HCO3-
Transport in a Mathematical Model of the Pancreatic Ductal Epithelium. Journal of Membrane Biology 176,77–100 (2000).
[9] S. H. Wright, Generation of resting membrane potential.Advances in Physiology Education 28, 139-142 (2004).
[10] NVIDIA corporation, 2012. CUDA C Programming Guide Available from: http://developer.NVIDIA.com/ NVIDIA-gpu-computing-documentation Accesed: Jul 11, 2012
[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, chapter 16.1 in Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1993.

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_28_3_2022_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST