• CONTACT
  • LAST ISSUE
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 23 (3) 2017, 211–218

A Nosé-Hoover Thermostat Adapted to a Slab Geometry

Maćkowiak Sz. 1, Pieprzyk Sławomir 2, Brańka A.C. 2, Heyes D.M. 3

1 Institute of Physics, Poznań University of Technology
Piotrowo 3, 60-965 Poznań, Poland
E-mail: szymon.mackowiak@put.poznan.pl

2 Institute of Molecular Physics, Polish Academy of Sciences
M. Smoluchowskiego 17, 60-179 Poznań, Poland
E-mail: pieprzyk@ifmpan.poznan.pl, branka@ifmpan.poznan.pl

3 Department of Physics, Royal Holloway
University of London, Egham, Surrey TW20 0EX, UK
E-mail: david.heyes@rhul.ac.uk

Received:

Received: 01 December 2016; revised: 22 February 2017; accepted: 27 February 2017; published online: 06 April 2017

DOI:   10.12921/cmst.2016.0000060

Abstract:

A Nosé-Hoover (NH) type thermostat is considered for Molecular Dynamics (MD) simulations of confined systems. This is based on a generalised velocity of the same generic form as the NH thermostat of Allen and Schmid, [Mol. Sim. 33, 21 (2007)]. An unthermostatted confined region is sandwiched between two walls which are thermostatted. No external shearing is imposed. Non-equilibrium Molecular Dynamics (NEMD) simulations were carried out of the time evolution of the wall and confined region temperature after a jump in temperature of the walls. Relaxation of the confined region temperature to the target value was found to be typically slower than that of the wall. An analysis of the system parameter dependence of the lag time, τ , and departures from what would be expected from Fourier’s law suggest that a boundary transmission heat flux bottleneck is a significant factor in the time delay. This delayed thermal equilibration would therefore become an important factor when a time-dependent (e.g., oscillatory) temperature or shearing of the walls is implemented using NEMD. Adjustments between the response time of the wall thermostat should be made compatible with that of the rest of the system, to minimise its effects on the observed behaviour.

Key words:

confined liquids, thermostatting

References:

[1] W.G. Hoover, Computational Statistical Mechanics (Elsevier,
Amsterdam, 1991).
[2] S. Nosé, A Molecular Dynamics Method for Simulations in
the Canonical Ensemble, Mol. Phys. 52, 255 (1984).
[3] W.G. Hoover, Canonical dynamics: Equilibrium phase-space
distributions, Phys. Rev. A 31, 1695 (1985).
[4] P. Hunenberger, Thermostat Algorithms for Molecular Dynamics Simulations, Adv. Polym. Sci. 173, 105 (2005).
[5] A. Bulgac, D. Kusnezov, Canonical ensemble averages from
pseudomicrocanonical dynamics, Phys. Rev. A 42, 5045
(1990).
[6] G.J. Martyna, M.L. Klein, M.Tuckerman, Nosé-Hoover
chains: The canonical ensemble via continuous dynamics,
J. Chem. Phys. 97, 2635 (1992).
[7] W.G. Hoover, B.L. Holian, Kinetic moments method for
the canonical ensemble distribution, Phys. Lett. A 211, 253
(1996).
[8] A.C. Brańka, M. Kowalik, K.W. Wojciechowski, Generalization of the Nosé-Hoover approach, J. Chem. Phys. 119, 1929
(2003).
[9] A.C. Brańka, K.W. Wojciechowski, Generalization of Nosé
and Nosé-Hoover isothermal dynamics, Phys. Rev. E 62, 3281
(2000).
[10] H.H. Rugh, Dynamical Approach to Temperature, Phys. Rev.
Lett. 78, 772 (1997).
[11] O.G. Jepps, G. Ayton, D.J. Evans, Microscopic expressions
for the thermodynamic temperature, Phys. Rev. E 62, 4757
(2000).
[12] G. Rickayzen, J.G. Powles, Temperature in the classical microcanonical ensemble, J. Chem. Phys. 114, 4333 (2001).
[13] C. Braga, K.P. Travis, A configurational temperature NoséHoover thermostat, J. Chem. Phys. 123, 134101 (2005).
[14] M.P. Allen, F. Schmid, A thermostat for molecular dynamics
of complex fluids, Mol. Simul. 33, 21 (2007).
[15] S. Pieprzyk, D.M. Heyes, Sz. Maćkowiak, A.C. Brańka,
Galilean-invariant Nosé-Hoover-type thermostats, Phys. Rev.
E 91, 033312 (2015).
[16] D. Kusnezov, A. Bulgac, W. Bauer, Canonical ensembles from
chaos, Ann. Phys. 204, 155 (1990).
[17] C. Gattinoni, D. M. Heyes, C. D. Lorenz, D. Dini, Traction
and nonequilibrium phase behavior of confined sheared liquids at high pressure, Phys. Rev. E 88, 052406 (2013).
[18] D. M. Heyes, E. R. Smith, D. Dini, H. A. Spikes, T. A. Zaki,
Pressure dependence of confined liquid behavior subjected to
boundary-driven shear, J. Chem. Phys. 136, 134705 (2012).
[19] C. Gattinoni, Sz. Maćkowiak, D. M. Heyes, A. C. Brańka,
D. Dini, Boundary-controlled barostats for slab geometries
in molecular dynamics simulations, Phys. Rev. E 90, 043302
(2014).
[20] M. Teodorescu, S. Theodossiades, H. Rahnejat, Impact dynamics of rough and surface protected MEMS gears, Tribol.
Int. 42, 197 (2009).
[21] S. Bernardi, B. D. Todd D. J. Searles, Thermostating highly
confined fluids, J. Chem. Phys. 132, 244706 (2010).
[22] B. D. Todd, D. J. Evans, P. J. Daivis, Pressure tensor for
inhomogeneous fluids, Phys. Rev. E 52, 1627 (1995).
[23] S. Butler, P. Harrowell, Simulation of the coexistence of
a shearing liquid and a strained crystal, J. Chem. Phys. 118,
4115 (2003).
[24] J. Petravic, P. Harrowell, The boundary fluctuation theory of
transport coefficients in the linear-response limit, J. Chem.
Phys. 124, 014103 (2006).
[25] Sz. Maćkowiak, D. M. Heyes, D. Dini, A. C. Brańka, Nonequilibrium phase behavior and friction of confined molecular
films under shear: A non-equilibrium molecular dynamics
study, J. Chem. Phys. 145, 164704 (2016).
[26] X. Yong, L. T. Zhang, Thermostats and thermostat strategies
for molecular dynamics simulations of nanofluidics, J. Chem.
Phys. 138, 084503 (2013).
[27] S. De Luca, B. D. Todd, J. S. Hansen, P. J. Daivis, A new and
effective method for thermostatting confined fluids, J. Chem.
Phys. 140, 054502 (2014).
[28] D. M. Heyes, The Liquid State, (John Wiley & Sons, Chichester, 1997).
[29] B.L. Holian, A.F. Voter, R. Ravelo, Thermostatted molecular
dynamics: How to avoid the Toda demon hidden in NoséHoover dynamics, Phys. Rev. E 52, 2338 (1995).
[30] G.E. Valenzuela, J.H. Saavedra, R.E. Rozasn P.G. Toledo,
Analysis of energy and friction coefficient fluctuations of
a Lennard-Jones liquid coupled to the Nosé-Hoover thermostat, Mol. Simul. 41, 521, (2014).
[31] S. Nosé, Constant-temperature molecular dynamics, Progress
of Theoretical Physics Supplement 103, 1 (1991).
[32] A.C. Brańka, Nosé-Hoover chain method for nonequilibrium molecular dynamics simulation, Phys. Rev. E 61, 4769,
(2000).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
  • GALLERY

    vol_15_02_2009
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
  • ALL ISSUES

    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • EARLY VIEW
  • ACCEPTED PAPERS

Institute of Bioorganic Chemistry Polish Academy of Sciences
Poznań Supercomputing and Networking Center

61-704 Poznań, Z. Noskowskiego 12/14
phone: (+48 61) 858-20-03
fax: (+48 61) 858-21-51

Copyright by PCSS, Poznań 1996-2021
All rights reserved