• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 19 (2) 2013, 77-87

Time-Symmetry Breaking in Hamiltonian Mechanics

Hoover Wm.G. , Hoover C.G.

Ruby Valley Research Institute, Highway Contract 60, Box 601
Ruby Valley, Nevada 89833
E-mail: hooverwilliam@yahoo.com

Received:

(Received: 11 February 2013; revised: 8 March 2013; accepted: 11 March 2013; published online: 13 March 2013)

DOI:   10.12921/cmst.2013.19.02.77-87

OAI:   oai:lib.psnc.pl:432

Abstract:

Hamiltonian trajectories are strictly time-reversible. Any time series of Hamiltonian coordinates f q g satisfying Hamilton’s motion equations will likewise satisfy them when played “backwards”, with the corresponding momenta changing signs : f +p g

Key words:

Inelastic Collisions, Lyapunov instability, reversibility, time-symmetry breaking

References:

[1] Wm. G. Hoover and Carol G. Hoover, Time Reversibility, Computer Simulation, Algorithms, and Chaos (World Scientific, Singapore, 2012).
[2] Wm. G. Hoover, Computational Statistical Mechanics (Elsevier Science, 1991), available free of charge at our website
[ www.williamhoover.info ].
[3] S. D. Stoddard and J. Ford, “Numerical Experiments on the Stochastic Behavior of a Lennard-Jones Gas System”, Physical Review A 8, 1504-1512 (1973).
[4] G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; a Method for Computing All of Them”, Meccanica 15, 9-30 (1980).
[5] W. G. Hoover and H. A. Posch, “Direct Measurement of Lyapunov Exponents”, Physics Letters A 113, 82-84 (1985),
[6] H. A. Posch, Wm. G. Hoover, and F. J. Vesely, “Canonical Dynamics of the Nosé Oscillator: Stability, Order, and Chaos”, Physical Review A 33, 4253-4265 (1986).
[7] Wm. G. Hoover, C. G. Hoover, I. F. Stowers, A. J. De Groot, and B. Moran, “Simulation of Mechanical Deformation via Nonequilibrium Molecular Dynamics”, in Microscopic Simulations of Complex Flows, Edited by Michel Mareschal (Volume 236 of NATO Science Series B, Plenum Press, 1990).
[8] B. L. Holian, Wm. G. Hoover, and H. A. Posch, “Resolution of Loschmidt’s Paradox: the Origin of Irreversible Behavior in Reversible Atomistic Dynamics”, Physical Review Letters 59, 10-13 (1987).
[9] Wm. G. Hoover and Carol G. Hoover, “Time’s Arrow for Shockwaves; Bit-Reversible Lyapunov and Covariant Vectors ; Symmetry Breaking”, Computational Methods in Science and Technology 19(2), 5-11 (2013).
[10] M. Romero-Bastida, D. Pazó, J. M. Lopéz, and M. A. Rodríguez, “Structure of Characteristic Lyapunov Vectors in Anharmonic Hamiltonian Lattices”, Physical Review E 82, 036205 (2010).
[11] D. Levesque and L. Verlet, “Molecular Dynamics and Time Reversibility”, Journal of Statistical Physics 72, 519-537 (1993).
[12] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, Incorporated (New York, 1954).
[13] S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-Atom- Method Functions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and their Alloys”, Physical Review B 33, 7983-7991 (1986).
[14] J. L. Lebowitz, “Boltzmann’s Entropy and Time’s Arrow”, Physics Today 46, 32-38 (September, 1993).
[15] F. J. Uribe, Wm. G. Hoover and Carol G. Hoover, “Maxwell and Cattaneo’s Time-Delay Ideas Applied to Shockwaves and the Rayleigh-Bénard Problem”, Computational Methods in Science and Technology 19(1), 5-12 (online January 2013).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_23_4_2017_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST