• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 18 (1) 2012, 5-10

A Method for Nucleotide Sequence Analysis

Kozarzewski Bohdan

University of Information Technology and Management
ul. H. Sucharskiego 2, 35-225 Rzeszów, Poland
e-mai: bkozarzewski@wsiz.rzeszow.pl

Received:

(Received: 22 February 2012; revised: 29 May 2012; accepted: 7 June 2012; published online: 21 June 2012)

DOI:   10.12921/cmst.2012.18.01.5-10

OAI:   oai:lib.psnc.pl:420

Abstract:

Symbolic sequence decomposition into a set of consecutive, distinct subsequences (mers) is presented. Several statistical distributions of nucleotide subsequences are defined and analysed. Sequence entropy and similarity between sequences in terms of mer lengths distribution are defined. An alignment-free method of phylogenetic tree
construction is proposed.

Key words:

phylogenetic tree, sequence parsing, similarity measure

References:

[1] A. Lempel, J. Ziv, On the complexity of finite sequences. IEEE Trans. Inform. Theory 22, 75-81 (1976).
[2] H.H. Out, K. Sayood, A new sequence distance measure for phylogenetic tree construction. Bioinformatics 19, 2122-2130 (2003).
[3] D.-G. Ke, Q.-Y. Tong, Easily adaptable complexity measure for finite time series. Phys. Rev. E77, 066215 (2008).
[4] Z. Kása, On the d-complexity of strings. http://arxiv.org/abs/1002.2721v1.
[5] C. Adami, N.J. Ceref, 1999. Physical complexity of symbolic sequences. arxiv: adap-org/9605002v3
[6] J. Wen, C. Li, Similarity analysis of DNA sequences based on the LZ complexity. Internet Electron. J. Mol. Des. 6, 1-12 (2007).
[7] B. Kozarzewski, Multilevel time series complexity. Journal of Applied Computer Science 19, 2, 61-71 (2011).
[8] J.-B. Brissaud, The meaning of entropy. Entropy 7, 68-96 (2005).
[9] Y.-H. Chen, S.-L. Nyeo, C.-Y. Yeh, Model for distribution of k-mers in DNA sequences. Physical Review E72, 011908 (2005).
[10] W.K. Brown, K.H. Wohletz, Derivation of the Weibull distribution based on physical principles and its connection to the Rossin-Rammler and lognormal distributions. Journal of Applied Physics 78, 2758-2763 (1995).
[11] M. van Oven, http://www.phylotree.org (2009).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_26_4_2020_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST