• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 25 (2) 2019, 99–103

Determination of thermal conductivity coefficient by Green-Kubo formula using the minimum image method

Hyżorek Krzysztof 1, Ciesielczyk Karol 2, Tretiakov Konstantin V. 1,3*

1 Institute of Molecular Physics
Polish Academy of Sciences
Smoluchowskiego 17/19
60-179 Poznań, Poland

2 Poznań University of Technology
Jana Pawła II 24
60-965 Poznań, Poland

3 The President Stanisław Wojciechowski State University
of Applied Sciences in Kalisz
Nowy Swiat 4, 62–800 Kalisz, Poland
*E-mail: tretiakov@ifmpan.poznan.pl

Received:

Received: 03 June 2019; revised: 27 June 2019; accepted: 29 June 2019; published online: 30 June 2019

DOI:   10.12921/cmst.2019.0000019

Abstract:

The thermal conductivity coefficients of solid argon have been evaluated by equilibrium molecular dynamic simulations. A Lennard-Jones interatomic potential has been used to model the interactions between argon atoms. In simulations and calculations of the thermal conductivity by the Green-Kubo formula, the long-range interactions between atoms have been taken into account using the minimum image method (MIM). The study shows that there are no significant differences between the values of the thermal conductivity obtained by method using MIM and those coming from traditional Green-Kubo approach. Both experimental data and results of molecular dynamics simulations are also in agreement with the Klemens-Callaway model for the thermal conductivity based on the three-phonon Umklapp scattering.

Key words:

Lennard-Jones potential, Molecular Dynamics simulations, solid argon, the Green-Kubo method, thermal conductivity

References:

[1] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, J.W. Arrowsmith Ltd., Bristol, UK (1987).
[2] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, Academic, New York (2005).
[3] R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Japan 12, 570–586 (1957).
[4] R. Zwanzig, Time-Correlation Functions and Transport Coefficients in Statistical Mechanics, Annu. Rev. Phys. Chem. 16, 67–102 (1965).
[5] J.G. Kirkwood, The Statistical Mechanical Theory of Transport Processes I. General Theory, J. Chem. Phys. 14, 180 (1946).
[6] D.M. Heyes, Transport-Coefficients of Lennard-Jones Fluids: A Molecular-Dynamics and Effective Hard-Sphere Treatment, Phys. Rev. B 37, 5677 (1988).
[7] K.V. Tretiakov, K.W.Wojciechowski, Quick and accurate estimation of the elastic constants using the minimum image method, Comput. Phys. Commun. 189, 77–83 (2015).
[8] A.J.C. Ladd, Monte-Carlo simulation of water, Mol. Phys. 33(4), 1039–1050 (1977).
[9] A.J.C. Ladd, Long-range dipolar interactions in computer simulations of polar liquids, Mol. Phys. 36(2), 463–474 (1978).
[10] D.P. Sellan, E.S. Landry, J.E. Turney, A.J. McGaughey, C.H. Amon, Size effects in molecular dynamics thermal conductivity predictions, Phys. Rev. B 81, 214305 (2010).
[11] K. Hy˙zorek, K.V. Tretiakov, Thermal conductivity of liquid argon in nanochannels from molecular dynamics simulations, J. Chem. Phys. 144, 194507 (2016).
[12] K.V. Tretiakov, S. Scandolo, Thermal conductivity of solid argon for molecular dynamics simulations, J. Chem. Phys. 120(8), 3765–3769 (2004).
[13] I.N. Krupskii, V.G. Manzhelii, Multiphonon Interactions and the Thermal Conductivity of Crystalline Argon, Krypton, and Xenon, Sov. Phys. JETP 28, 1097 (1969).
[14] F. Clayton, D.N. Batchelder, Temperature and volume dependence of the thermal conductivity of solid argon, J. Phys. C: Solid State Phys. 6, 1213 (1973).
[15] D.K. Christen, G.L. Pollack, Thermal conductivity of solid argon, Phys. Rev. B 12, 3380 (1975).
[16] P.G. Klemens, [In:] Solid State Physics, edited by F. Seitz and D. Turnbull, Academic Press, New York, 1st Edition (1958).
[17] J. Zou, A. Balandin, Phonon heat conduction in a semiconductor nanowire, J. Appl. Phys. 89, 2932 (2001).
[18] P.G. Klemens, [In:] Chem. and Phys. of Nanostructures and Related Non-Equilibrium Materials, edited by E. Ma, B. Fultz, R. Shall, J. Morral, and P. Nash, Minerals, Metals, Materials Society, Warrendale, PA (1997).
[19] J.P. Poirier, Introduction to the Physics of Earth’s Interior, Cambridge University Press, Cambridge (1991).
[20] G.J. Keeler, D.N. Batchelder, Measurement of the elastic constants of argon from 3 to 77 K, J. Phys. C: Solid State Phys. 3, 510 (1970).
[21] A.M. Krivtsov, V.A. Kuzkin, Derivation of Equations of State for Ideal Crystals of Simple Structure, Mech. Sol. 46, 387 (2011).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_28_1_2022_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST