• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 23 (1) 2017, 5–8

Singly-Thermostated Ergodicity in Gibbs’ Canonical Ensemble and the 2016 Ian Snook Prize Award

Hoover Wm.G. , Hoover C.G.

Ruby Valley Research Institute Highway Contract 60, Box 601
Ruby Valley, Nevada 89833
E-mail: hooverwilliam@yahoo.com

Received:

Received: 20 January 2017; accepted: 20 January 2017; published online: 31 January 2017

DOI:   10.12921/cmst.2017.0000005

Abstract:

The 2016 Snook Prize has been awarded to Diego Tapias, Alessandro Bravetti, and David Sanders for their paper “Ergodicity of One-Dimensional Systems Coupled to the Logistic Thermostat”. They introduced a relatively-stiff hyperbolic tangent thermostat force and successfully tested its ability to reproduce Gibbs’ canonical distribution for three one-dimensional problems, the harmonic oscillator, the quartic oscillator, and the Mexican Hat potentials: {(q2 /2); (q 4 /4); (q 4 /4) − (q 2 /2)}. Their work constitutes an effective response to the 2016 Ian Snook Prize Award goal, “finding ergodic algorithms for Gibbs’ canonical ensemble using a single thermostat”. We confirm their work here and highlight an interesting feature of the Mexican Hat problem when it is solved with an adaptive integrator.

Key words:

algorithms, chaos, dynamical systems, ergodicity, Ian Snook Prize

References:

[1] S. Nosé, A Unified Formulation of the Constant Temperature
Molecular Dynamics Methods, Journal of Chemical Physics
81, 511–519 (1984).
[2] S. Nosé, Constant Temperature Molecular Dynamics Methods,
Progress in Theoretical Physics Supplement 103, 1–46 (1991).
[3] Wm.G. Hoover, Canonical Dynamics: Equilibrium Phase-
Space Distributions, Physical Review A 31, 1695–1697
(1985).
[4] D. Kusnezov, A. Bulgac, W. Bauer, Canonical Ensembles
from Chaos, Annals of Physics 204, 155–185 (1990).
[5] D. Kusnezov, A. Bulgac, Canonical Ensembles from Chaos:
Constrained Dynamical Systems, Annals of Physics 214, 180–
218 (1992).
[6] Wm.G. Hoover, B.L. Holian, Kinetic Moments Method for
the Canonical Ensemble Distribution, Physics Letters A 211,
253–257 (1996).
[7] Wm.G. Hoover, C.G. Hoover, Singly-Thermostated Ergodic-
ity in Gibbs’ Canonical Ensemble and the 2016 Ian Snook
Prize, Computational Methods in Science and Technology 22,
127–131 (2016).
[8] D. Tapias, A. Bravetti, D.P. Sanders, Ergodicity of One-
Dimensional Systems Coupled to the Logistic Thermostat,
Computational Methods in Science and Technology (in press,
2017) = arXiv 1611.05090.
[9] Wm.G. Hoover, C.G. Hoover, Comparison of Very Smooth
Cell-Model Trajectories Using Five Symplectic and Two
Runge-Kutta Integrators, Computational Methods in Science
and Technology 21, 109–116 (2015).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_24_1_2018_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST