• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 16 (2) 2010, 191-194

On Fractional Schrödinger Equation

Rozmej Piotr 1, Bandrowski Bartosz 2

1Institute of Physics, 2Faculty of Mathematics Computer Science and Econometrics
University of Zielona Góra,
ul. Szafrana 4a, 65-516 Zielona Góra, Poland
e-mail: P.Rozmej@if.uz.zgora.pl, B.Bandrowski@gmail.com

Received:

Received: 23 March 2010; accepted: 7 July 2010; published online: 13 September 2010

DOI:   10.12921/cmst.2010.16.02.191-194

OAI:   oai:lib.psnc.pl:730

Abstract:

In the note, recent efforts to derive fractional quantum mechanics are recalled. Some applications of a fractional approach to the Schrödinger equation are discussed as well.

Key words:

Fractional calculus, fractional quantum mechanics, fractional Schrödinger equation

References:

[1] I. Podlubny, Fractional Differential Equations. Academic Press, 1999.
[2] Fractional Calculus Modeling, http://www.fracalmo.org/
[3] N. Laskin, Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298 (2000); Fractional quantum mechanics. Phys. Rev. E 62, 3135 (2000).
[4] N. Laskin, Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002).
[5] M. Naber, Time fractional Schrödinger equation. J. Math. Phys. 45, 3339 (2004).
[6] F. Ben Adda, J. Cresson, Fractional differential equations and the Schrödinger equation. Appl. Math. Comp. 161, 323 (2005).
[7] R. Herrmann, Properties of fractional derivative Schrödinger type wave equation and a new interpretation of the charmonium spectrum. arXiv:math-ph/05100099 (2006).
[8] R. Herrmann, The fractional symmetric rigid rotor. J. Phys. G 34, 607 (2007).
[9] R. Herrmann, q-deformed Lie algebras and fractional calculus. arXiv:0711:3701 (2007).
[10] R. Herrmann, Gauge invariance in fractional field theories. Phys. Lett. A 372, 5515 (2008).
[11] R. Herrmann, Fractional dynamic symmetries and the ground properties of nuclei. arXiv:0806.2300 (2008).
[12] R. Herrmann, Fractional phase transition in medium size metal cluster and some remarks on magic numners in gravitationally and weakly interacting clusters. arXiv:0907.1953 (2009).
[13] B. Bandrowski, A. Karczewska, P. Rozmej, Numerical solutions to integral equations equivalent to differential equations with fractional time derivative. Int. J. Appl. Math. Comp. Sci. 20 (2), 261-269 (2010). (http://www.uz.zgora.pl/ prozmej/amcs2.pdf)

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_25_2_2019_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST