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Abstract: We investigate the classical dynamics of optical nonlinear Kerr couplers, focusing on their potential relevance
to quantum computing applications. The system consists of three Kerr-type nonlinear oscillators arranged in two configu-
rations: a triangular arrangement, where each oscillator is coupled to the others, and a sandwich arrangement, where only
the middle oscillator interacts with the two outer ones. The system is driven by an external periodic field and includes dis-
sipative processes. Its evolution is governed by six non-autonomous differential equations derived from a Kerr Hamiltonian
with nonlinear coupling terms. We show that even for identical Kerr media, the interplay between nonlinear couplings and
mismatched fundamental and pump frequencies leads to rich and complex dynamics, including the emergence of multi-
ple stable attractors. These attractors are highly sensitive to both the coupling configuration and initial conditions. A key
contribution of this work is a detailed stability analysis based on the numerical calculation of Lyapunov exponents, which
reveals transitions from regular to chaotic dynamics as damping is reduced. We identify critical damping thresholds for the
onset of chaos and characterize phenomena such as chaotic beats. These results offer insights for potential experimental
realizations and are directly relevant to emerging quantum technologies, where Kerr parametric oscillators play a central
role in quantum gates, error correction protocols, and quantum neural network architectures.
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I. Introduction

Nonlinear optical systems based on the Kerr effect have
emerged as a key area of overlap between classical nonlinear
dynamics and quantum information science. Extensive re-
search on such systems has explored both classical [1, 2] and
quantum [3–6] properties of the generated optical fields, of-
fering valuable insights into fundamental physical processes
and enabling a range of practical applications (as briefly re-
viewed in Sec. II). In particular, systems of coupled oscil-
lators with Kerr-type nonlinearity have garnered significant
interest due to their rich dynamical behavior and potential
uses in optical signal processing, all-optical switching, and,
more recently, quantum information processing.

The nonlinear Kerr effect, defined by an intensity-
dependent refractive index, facilitates self-phase modula-
tion and enables complex interactions when multiple optical
fields are coupled. In systems of coupled Kerr oscillators,
this nonlinearity gives rise to a wide spectrum of dynamical
behaviors, ranging from regular periodic motion to intricate
chaotic dynamics. Such richness makes these systems valu-
able both for advancing theoretical understanding and for
enabling diverse technological applications. Recent progress
in nanophotonics and integrated optics has significantly in-
creased the feasibility of experimentally realizing these sys-
tems (see [7] and references therein). Notably, silicon nitride
microresonators have demonstrated high-efficiency optical
parametric oscillation, achieving conversion efficiencies as
high as 29% [8].

A particularly significant development is the recent
emergence of Kerr parametric oscillators (KPOs) as promis-
ing building blocks for quantum processors, especially in
superconducting circuit platforms [6, 9, 10]. Over the past
few years (2022–2025), these systems have demonstrated
key advantages, including high gate fidelities, enhanced er-
ror resilience, and increased computational capabilities [11].
The extension from two to three coupled oscillators—the
central focus of this work—marks a critical threshold, en-
abling quantum functionalities that are unattainable in sim-
pler configurations. Three-oscillator systems exhibit signif-
icantly richer phase-space structures, supporting up to eight
stable fixed points under specific parameter regimes [12],
thereby offering an expanded state space for quantum infor-
mation encoding and manipulation.

The mathematical description of three coupled KPOs in
the quantum regime involves a Hamiltonian comprising mul-
tiple nonlinear interaction terms:

H =

3∑
i=1

[
∆ia

†
iai −

Ki

2
(a†iai)

2 +
pi
2
(a2i + a†i

2
)

]

+

3∑
i,j>i

Jij(a
†
iaj + aia

†
j), (1)

where ∆i denotes the detuning frequency, Ki the Kerr non-
linearity strength, pi the pumping amplitude, and Jij the
coupling strength between oscillators. While this Hamilto-
nian formulation applies to the few-photon quantum regime,
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our classical analysis offers complementary insights into the
system’s behavior in higher-excitation regimes, especially
concerning stability, multistability, and the onset of chaos.

In the commercial sector, quantum computing platforms
based on coupled nonlinear oscillators are beginning to take
shape. A notable example is IBM’s Quantum System Two,
launched in 2023, which introduced the first modular quan-
tum computer featuring three coupled Heron processors.
This architecture supports the execution of up to 1800 quan-
tum gates within coherence times—nearly quadrupling the
capacity of earlier systems [10]. Such advances emphasize
the growing importance of a detailed understanding of multi-
oscillator Kerr systems, both from theoretical and practical
standpoints.

Earlier work by Śliwa and Grygiel [13] explored the
dynamics of two coupled Kerr oscillators, uncovering rich
phase-space structures characterized by multiple coexisting
attractors and transitions between regular and chaotic behav-
ior. Building upon their findings, the present study extends
the framework to three coupled oscillators, introducing ad-
ditional degrees of freedom and novel coupling topologies.
These extensions give rise to significantly more intricate dy-
namical behavior, enabling the exploration of new stability
regimes and potential applications in quantum information
processing.

It is also worth highlighting previous fully quantum-
mechanical treatments of triple Kerr oscillator couplers. No-
tably, Kalaga et al. [14] demonstrated that such a system can
function as a nonlinear quantum scissors device and effec-
tively operate as a three-qubit model. More recently, Hanapi
et al. [15] investigated an optical coupler composed of three
second-harmonic generation systems, focusing on the gen-
eration of nonclassical optical fields. However, these stud-
ies primarily concentrated on quantum aspects. In contrast,
our present work emphasizes the classical regime, particu-
larly through a detailed stability analysis using Lyapunov
exponents—an approach that, to our knowledge, has not yet
been applied to systems of three coupled Kerr oscillators.

The study of chaotic dynamics in nonlinear optical sys-
tems holds both fundamental and practical importance. On a
fundamental level, it sheds light on the mechanisms govern-
ing the transition from regular to chaotic behavior in com-
plex nonlinear systems. From a practical perspective, con-
trolled chaos has been proposed for diverse applications, in-
cluding secure optical communication [16], high-speed ran-
dom number generation [17], and photonic reservoir com-
puting [18].

This paper builds upon previous research by systemati-
cally analyzing the dynamics and stability of three coupled
Kerr oscillators under different coupling configurations. Our
primary focus is on the influence of nonlinear couplings on
system stability and phase-space evolution, with particular
attention to the onset of chaos as key parameters are varied.

The novel contributions of our study include: (1) a com-
parative analysis of both triangular and sandwich coupling
topologies (Fig. 1); (2) a comprehensive Lyapunov exponent
analysis identifying transitions to chaotic regimes; (3) the
discovery of multiple coexisting stable attractors with dis-
tinct phase-space structures dependent on coupling parame-

ters (as well as mapping their basins of attraction); and (4)
the demonstration of signal patterns known as chaotic beats,
generated by the system under specific conditions.

Before introducing our model and showing its numerical
solutions, we first highlight the significance of the optical
Kerr effect in contemporary quantum nonlinear physics.

Fig. 1. Cross-sections of two coupling configurations: the triangular
arrangement (top), in which all three oscillators are mutually cou-
pled, and the sandwich arrangement (bottom), where the middle
oscillator is coupled to both others, but the first and last oscillators

have no direct coupling.

II. On the Fundamental and Practical Role of the
Optical Kerr Effect

Although this paper focuses on the classical Kerr model,
the underlying phenomena are highly relevant for quantum
technologies due to their fundamental importance and wide
range of applications.

The optical Kerr effect plays a central role in quan-
tum state engineering and quantum information processing
(QIP), and has attracted sustained interest due to its rich
nonlinear dynamics and broad applicability across various
platforms in quantum optics and related fields. These in-
clude cavity quantum electrodynamics (QED) [4], circuit
QED (based on superconducting quantum circuits coupled
to microwave resonators) [6, 9], atom optics (using Ryd-
berg atoms, cold atomic gases, and Bose-Einstein conden-
sates) [19], as well as cavity optomechanical systems (see,
e.g., [20, 21]). Moreover, Kerr-type systems provide proto-
typical models for exploring chaotic dynamics and nonlinear
quantum control, which are the central focus of this paper.

A qubit—whether a natural or artificial atom such as a
superconducting circuit—dispersively coupled to a resonator
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(like transmission line resonator) provides a versatile plat-
form for exploring Kerr-type light-matter interactions. In this
dispersive limit, the qubit induces measurable frequency and
phase shifts in the resonator’s spectrum, enabling effective
Kerr nonlinearities. This approach is widely employed to
realize Kerr-type interactions, particularly when the qubit-
resonator (i.e., light-matter) coupling reaches the strong, ul-
trastrong, or even deep-strong regimes [22, 23].

The Kerr effect, which induces an intensity-dependent
refractive index, gives rise to a variety of nonlinear op-
tical phenomena such as dispersive optical bistability [5],
self-focusing and self-phase modulation [24]. It also plays
a central role in quantum light control by enabling pho-
ton blockade—an effect that suppresses the absorption of
multiple photons, allowing for the generation of single pho-
tons [25, 26]. This effect has been demonstrated in numer-
ous experiments (see [6, 27] for references). Beyond single-
photon blockade, the Kerr effect enables a wide range of ad-
vanced phenomena, including multi-photon blockade [28–
30], nonreciprocal [31] and chiral [32] photon blockade ef-
fects, as well as phonon blockade, in which mechanical ex-
citations (phonons) are suppressed [33], and hybrid photon-
phonon blockade [34]. Photon [35, 36] and phonon [37]
blockade effects in coupled Kerr oscillator systems have also
been studied as mechanisms for generating maximally en-
tangled states, such as Bell states. Further studies of two
coupled Kerr oscillators have led to the prediction of uncon-
ventional photon blockade [38], including its nonreciprocal
version [39], where even very weak Kerr nonlinearities can
enable high-fidelity generation of single photons.

Beyond the generation of Fock and Bell states via pho-
ton blockade, Kerr nonlinearity serves as a versatile resource
for producing a broad spectrum of nonclassical states of
light [40]. For example, it enables the creation of highly
squeezed states of light [41–44], as well as generation of
macroscopically distinguishable quantum superpositions of
coherent states, including the celebrated Schrödinger cat
states [45, 46] and their multi-component analogs, often re-
ferred to as Schrödinger kitten states [47], which were ex-
perimentally generated in [48–50].

The Kerr effect is also fundamental to implement-
ing quantum gates and performing quantum nondemolition
(QND) measurements, where it facilitates the indirect obser-
vation of quantum states without destroying them [3, 51, 52],
as demonstrated in several landmark experiments (see [19]
for details). Among the various proposals for Kerr-based
quantum gates (see, e.g., [11, 53, 54] and references therein),
one notable example is the implementation of fault-tolerant
multi-qubit geometric entangling gates using photonic cat
states generated by N Kerr nonlinear oscillators coupled to a
common harmonic resonator [55]. That Kerr-based proposal
is arguably superior to other quantum gate implementations
based on bosonic codes (see Table 1 in [55]), offering higher
gate fidelities and less demanding coherence requirements
in terms of energy relaxation time (T1) and dephasing time
(T2).

Many of these applications critically rely on achiev-
ing strong Kerr nonlinearity at the few-photon level. Sev-
eral strategies have been proposed and experimentally ex-

plored to enhance this nonlinearity. In addition to the meth-
ods demonstrated in, e.g., Refs. [48–50], a particularly note-
worthy approach involves sequentially applying two-photon
squeezing processes—governed by the second-order nonlin-
ear susceptibility χ(2)—to systems with initially weak Kerr
nonlinearity, which arises from the third-order susceptibility
χ(3) [23, 56]. This approach enables, at least theoretically,
an exponential enhancement of the Kerr nonlinearity.

These capabilities make the Kerr effect indispensable for
both foundational studies in nonlinear optics and the devel-
opment of practical quantum technologies.

III. Model and Its Dynamics

The dynamics of a system comprising three coupled Kerr
oscillators extends the two-oscillator model previously ana-
lyzed in [13]. Introducing a third oscillator, coupled nonlin-
early and operating at a distinct frequency, enriches the sys-
tem’s behavior and can be described by the following Hamil-
tonian:

H = H0 +H1 +H2, (2)

where

H0 =

3∑
j=1

ωja
∗
jaj +

1

2

3∑
j=1

ϵj(a
∗
j )

2a2j , (3)

H1 = ϵ12a
∗
1a

∗
2a1a2 + ϵ13a

∗
1a

∗
3a1a3 + ϵ23a

∗
2a

∗
3a2a3, (4)

H2 = i

3∑
j=1

[
Fj

(
a∗je

−iΩjpt − aje
iΩjpt

)]
. (5)

The Hamiltonian H0 describes three independent Kerr os-
cillators, where ωj denote their natural frequencies and ϵj
quantify the strength of the Kerr nonlinearities. The Hamil-
tonian H1 accounts for the nonlinear interactions between
oscillator pairs, with ϵ12, ϵ13, and ϵ23 representing the re-
spective coupling strengths. Finally, H2 captures the interac-
tion of each oscillator with external driving fields, where Fj

are the driving amplitudes and Ωjp the corresponding pump
frequencies.

The equations of motion for the complex variables a1,
a2, and a3 are derived from the Hamiltonian via the relation:

ȧj = −i
∂H

∂a∗j
− γjaj , (6)

where the final term accounts for dissipation with γj denot-
ing the damping rates. Thus, we obtain:

da1
dt

= −iω1a1 − iϵ1a
∗
1a

2
1 − iϵ12a1a

∗
2a2

−iϵ13a1a
∗
3a3 + F1e

−iΩ1pt − γ1a1, (7)
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da2
dt

= −iω2a2 − iϵ2a
∗
2a

2
2 − iϵ12a2a

∗
1a1

−iϵ23a2a
∗
3a3 + F2e

−iΩ2pt − γ2a2, (8)

da3
dt

= −iω3a3 − iϵ3a
∗
3a

2
3 − iϵ23a3a

∗
2a2

−iϵ13a3a
∗
1a1 + F3e

−iΩ3pt − γ3a3. (9)

The coupled nonlinear differential equations (7)–(9) define
a six-dimensional dynamical system when decomposed into
the real and imaginary parts of each complex variable aj
(j = 1, 2, 3), representing the optical field in each section
of the coupler. For each oscillator, the evolution depends on
its intrinsic frequency, Kerr nonlinearity, nonlinear coupling
to the other oscillators, external driving forces, and energy
dissipation.

The damping terms −γjaj are essential to our stability
analysis, as they characterize the energy dissipation within
the system. These terms critically influence whether the sys-
tem’s behavior settles into periodic oscillations or evolves
into chaotic dynamics. For certain parameter regimes, the
equations admit periodic solutions of the form:

a1(t) =
F1

γ1
exp

[
−i

(
ω1 + ϵ1

F 2
1

γ2
1

+ ϵ12
F 2
2

γ2
2

+

+ϵ13
F 2
3

γ2
3

)
t

]
, (10)

a2(t) =
F2
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exp
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F 2
2
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F 2
1

γ2
1

+

+ϵ23
F 2
3

γ2
3

)
t

]
, (11)

a3(t) =
F3

γ3
exp

[
−i

(
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F 2
3
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3

+ ϵ23
F 2
2
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+

+ϵ13
F 2
1

γ2
1

)
t

]
, (12)

only if the pumping frequencies are given by:

Ω1p = ω1 + ϵ1
F 2
1

γ2
1

+ ϵ12
F 2
2

γ2
2

+ ϵ13
F 2
3

γ2
3

,

Ω2p = ω2 + ϵ2
F 2
2

γ2
2

+ ϵ12
F 2
1

γ2
1

+ ϵ23
F 2
3

γ2
3

, (13)

Ω3p = ω3 + ϵ3
F 2
3

γ2
3

+ ϵ23
F 2
2

γ2
2

+ ϵ13
F 2
1

γ2
1

,

and the initial conditions are given by:

aj0 = aj(t = 0) =
Fj

γj
, where j = 1, 2, 3. (14)

In phase space, these periodic solutions satisfy the following
equations:

|aj |2 =
F 2
j

γ2
j

. (15)

For our specific analysis, we focus on a system with
the following parameters: ω1 = 1, ω2 = 0.5, ω3 = 0.25,
ϵ1 = ϵ2 = ϵ3 = 0.01, F1 = F2 = F3 = 5, γ1 =
γ2 = γ3 = 0.5, Ω1p = 2.2, Ω2p = 1.7, Ω3p = 1.45, and
ϵ12 = ϵ13 = ϵ23 = 0.001 (for the triangular configuration).
With these parameters, the oscillators trace circular trajecto-
ries in phase space, each with a radius of 10 and oscillating
at frequencies of 2.2, 1.7, and 1.45, respectively.

The coupling configurations we examine correspond to
different arrangements of the three oscillators, as illustrated
in Fig. 1. In the triangular arrangement, each oscillator is di-
rectly coupled to the other two, forming a fully connected
network. In contrast, the sandwich arrangement features the
middle oscillator coupled to both outer oscillators, while
the outer oscillators do not interact directly with each other.
These distinct topologies give rise to markedly different dy-
namics and stability characteristics. Notably, these coupling
schemes have direct analogues in quantum computing ar-
chitectures, where specific coupling geometries can be engi-
neered to realize targeted computational functionalities—for
example, in the design of fiber couplers.

Furthermore, the system is six-dimensional with a total
of 18 parameters. Exhaustively exploring all parameter com-
binations is practically infeasible. Consequently, it is nec-
essary to focus on a carefully chosen subset of parameters
and thoroughly analyze the system’s behavior within that re-
duced parameter space.

IV. Phase-Space Trajectories and Attractor Structure

The phase-space analysis of the system (7)–(9) reveals
key dynamical properties. For initial conditions a′j0 =
Re aj0 = 10 and a′′j0 = Im aj0 = 0 (j = 1, 2, 3), the phase
points of all three subsystems follow circular trajectories of
radius 10, as described by equations (10)–(12), with frequen-
cies Ω1p = 2.2, Ω2p = 1.7, and Ω3p = 1.45. However, when
the initial condition of the first subsystem is varied—while
keeping a′j0 = 10 and a′′j0 = 0 fixed for j = 2, 3—multiple
attractors emerge.

To systematically analyze this behavior, we performed
numerical simulations varying the initial conditions while
keeping the system parameters fixed. A fourth-order Runge-
Kutta method with adaptive step size control was used to en-
sure both numerical stability and accuracy. The integration
was carried out up to t > 1000 (in normalized units) to al-
low transient dynamics to decay and to reliably capture the
system’s asymptotic behavior.

First, we present the time evolution of the first Kerr
oscillator—specifically, the real part of a1(t)—for the tri-
angular arrangement. Fig. 2(a) shows the purely periodic
evolution of the oscillator in the case of initial conditions
(Re a10, Im a10) located on the attractor (i.e., the limit cy-
cle) of radius 10. When the initial conditions are outside the
attractor, transient effects occur before the system reaches
the attractor (as in Fig. 2(b)—in this case, the attractor has a
radius of 4.729).
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Fig. 2. Time evolution of Re(a1(t)) for the first oscillator sub-
system with parameters: ω1 = 1, ω2 = 0.5, ω3 = 0.25; ϵ1 =
ϵ2 = ϵ3 = 0.01; F1 = F2 = F3 = 5; γ1 = γ2 = γ3 = 0.5;
Ω1p = 2.2, Ω2p = 1.7, Ω3p = 1.45; and coupling strengths
ϵ12 = ϵ13 = ϵ23 = 0.001 (triangular configuration). Initial con-
ditions are: (a) Re aj0 = 10 and Im aj0 = 0 for j = 1, 2, 3;
(b) Re a10 = 48, Im a10 = −48, Re a20 = 10, Im a20 = 0,

Re a30 = 10, Im a30 = 0.

A similar analysis to that shown in Fig. 2 reveals that
the phase point representing the first subsystem eventually
converges to one of three distinct circular attractors:

• the primary attractor with |a1|2 = 102 (radius r = 10),
• the secondary attractor with |a1|2 = (6.457)2 (radius
r′ = 6.457),
• the tertiary attractor with |a1|2 = (4.729)2 (radius r′′ =
4.729).

Figure 3(a) shows the phase point starting from initial
conditions Re a10 = 10, Im a10 = 0, converging to the pri-
mary attractor with radius r = 10 by time t = 150. Fig-
ure 3(b) illustrates convergence to the secondary attractor
with radius r′ = 6.457 from the initial conditions Re a10 =
0, Im a10 = 0. In Fig. 3(c), the phase point beginning at
Re a10 = 48, Im a10 = −48 converges to the tertiary at-
tractor with radius r′′ = 4.729. In the context of quantum
computing, these distinct stable states can correspond to dif-
ferent computational states in multi-state quantum memory.

Fig. 3. Phase-space trajectories of the first Kerr oscillator with pa-
rameters as in Fig. 2, under the triangular configuration and varying
initial conditions: (a) Re a10 = 10, Im a10 = 0, Re a20 = 10,
Im a20 = 0, Re a30 = 10, Im a30 = 0; (b) Re a10 = 0,
Im a10 = 0, Re a20 = 10, Im a20 = 0, Re a30 = 10, Im a30 = 0;
(c) Re a10 = 48, Im a10 = −48, Re a20 = 10, Im a20 = 0,
Re a30 = 10, Im a30 = 0. The trajectories demonstrate conver-
gence toward three distinct attractors with radii: r = 10, r′ =

6.457, and r′′ = 4.729, respectively.
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The basins of attraction for each attractor were
mapped by sampling a grid of initial conditions in the
(Re a10, Im a10) plane, as shown in Fig. 4. We observed that
the basin boundaries exhibit fractal-like structures, reflecting
a high sensitivity to initial conditions—a hallmark of nonlin-
ear systems with multiple attractors.

Fig. 4. Basin of attraction corresponding to the case shown in
Fig. 3. Colors indicate which stable attractor the subsystem con-
sisting of the first oscillator reaches from each initial condition
(Re a10, Im a10): r = 10 (yellow), r = 6.457 (blue), and r =
4.729 (green). Asterisks mark the exact initial conditions used in
Fig. 3(a–c). Note that only the attractor with radius r = 10 is ex-

plicitly labeled in the figure.

Configuration r r′ r′′ Ω1p Ω2p Ω3p

triangular 10 6.457 4.729 2.2 1.7 1.45
sandwich 10 6.73 5.339 2.1 1.7 1.35

Tab. 1. Attractor radii and frequencies for different coupling con-
figurations, specifically the triangular arrangement (ϵ12 = ϵ13 =
ϵ23 = 0.001) and the sandwich arrangement (ϵ13 = 0, ϵ12 =

ϵ23 = 0.001).

To investigate the influence of coupling configuration,
we compared the triangular arrangement with the sandwich
configuration, in which ϵ13 = 0, meaning there is no di-
rect coupling between the first and third oscillators. Table 1
summarizes the properties of the attractors for each configu-
ration.

While both configurations exhibit similar transient be-
havior and ultimately converge to circular periodic orbits, a
notable difference emerges: the sandwich configuration re-
sults in larger secondary and tertiary attractors than the tri-
angular one. This counterintuitive finding suggests that re-
ducing the number of couplings can, in certain cases, en-
hance rather than suppress the intensity of specific oscilla-
tion modes—highlighting the intricate and complex nature
of nonlinear interactions in the system. It is also important

to note that reducing the number of couplings introduces
greater asymmetry into the system, which may play a sig-
nificant role in shaping the dynamical properties of the cou-
pler. This finding has significant implications for designing
quantum computing architectures where specific coupling
geometries can be engineered to achieve desired computa-
tional properties.

V. Lyapunov Exponent Analysis and Transition to
Chaos

Lyapunov exponents offer a rigorous means of charac-
terizing the stability of a dynamical system by quantifying
the rate at which nearby trajectories in phase space diverge
or converge. A positive maximal Lyapunov exponent signi-
fies exponential divergence of initially close trajectories—a
hallmark of chaotic behavior. In contrast, a zero maximal
exponent indicates quasiperiodic dynamics, while a negative
maximal exponent corresponds to periodic behavior, where
trajectories remain bounded and converge. The method ap-
plied ranks the Lyapunov exponents in descending order. If
the largest exponent is positive, the system is chaotic. If two
or more exponents are positive, the system is classified as
hyperchaotic, exhibiting even more complex instability.

In quantum computing applications, understanding the
stability characteristics of Kerr oscillator systems is crucial
for designing reliable quantum operations, as chaos can lead
to information loss and decoherence.

For our system of three nonlinearly coupled Kerr oscil-
lators, we employed the method of Wolf et al. [57], which
incorporates the Gram-Schmidt reorthonormalization (GSR)
algorithm. This method tracks the evolution of perturbation
vectors in the tangent space alongside the phase-space tra-
jectory, periodically reorthonormalizing the basis vectors to
avoid numerical instability and ensure accurate computation
of Lyapunov exponents.

The system of equations (7)–(9) defines a six-
dimensional dynamical system. Linearizing around a refer-
ence trajectory yields an additional system of 36 variational
equations—corresponding to 6 perturbation vectors in 6-
dimensional space—required to compute the full Lyapunov
spectrum. Consequently, analyzing the three-oscillator Kerr
coupler involves solving a total of 42 coupled ordinary dif-
ferential equations (ODEs).

Our numerical implementation involved the following
steps:

1. Simultaneous integration of the original system de-
fined by Eqs. (7)–(9) along with the corresponding set
of linearized variational equations.

2. Periodic application of the GSR procedure, typically
every 0.01 time units, to maintain numerical stability
of the tangent space vectors.

3. Accumulation of logarithmic rates of expansion and
contraction along each orthonormal direction in phase
space.
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4. Long-time averaging of the accumulated rates, typi-
cally over more than 5000 time units, to ensure con-
vergence and to eliminate transient effects.

To ensure the robustness of our numerical procedure, we
validated the results by confirming that the sum of all Lya-
punov exponents approximates the theoretical expectation of
−(γ1 + γ2 + γ3), which reflects the total dissipation in the
system.

The identification of distinct stability regimes is partic-
ularly relevant for quantum computing applications, where
controlled chaotic behavior can be exploited for specific
tasks such as random number generation and reservoir com-
puting.

Given the high dimensionality and large parameter space
of the system, all Lyapunov spectrum calculations were per-
formed using a fixed set of baseline parameters: ω1 = 1,
ω2 = 0.5, ω3 = 0.25, ϵ1 = ϵ2 = ϵ3 = 0.01, F1 =
F2 = F3 = 5, Ω2p = 1.7, and Ω3p = 1.45. The ini-
tial conditions were as follows: Re aj0 = 10, Im aj0 = 0
(j = 1, 2, 3). Figure 5 presents the key results of our anal-
ysis of the Lyapunov exponent spectrum for the triangular
configuration (ϵ12 = ϵ13 = ϵ23 = 0.001), shown as a func-
tion of the pumping frequency Ω1p of the first Kerr oscillator.
Each panel corresponds to a different value of the damping
constants, with γ1 = γ2 = γ3 = γ. Several critical observa-
tions emerge from this analysis:

1. Strong damping regime (Fig. 5(a) for γ = 0.005)
All Lyapunov exponents remain negative and ap-
proximately constant across the entire frequency
range, indicating a strongly dissipative regime. In this
regime, the system consistently converges to stable
fixed points or limit cycles, regardless of the pump-
ing frequency. From a quantum computing perspec-
tive, such behavior corresponds to robust and pre-
dictable dynamics—an essential feature for imple-
menting high-fidelity quantum gates.

2. Intermediate damping regime (Fig. 5(b) for γ =
0.001) Although all Lyapunov exponents remain neg-
ative and show similar variation across the pumping
frequency, there are more points of rapidly increas-
ing exponents, indicating elevated sensitivity to pa-
rameter changes. The smaller magnitudes of the ex-
ponents imply much slower convergence to attractors.
This regime may be advantageous for applications that
benefit from heightened sensitivity to inputs, such as
quantum sensing.

3. Weak damping regime (Fig. 5(c) for γ = 0.0002)
The largest Lyapunov exponents approach zero at spe-
cific frequencies, indicating that the system is near
critical transitions. The spectrum exhibits pronounced
frequency dependence, with fluctuations reflecting
competing dynamical regimes. Detailed analysis re-
veals a frequent occurrence of quasi-periodic states.
Similar “edge-of-chaos” regimes have been leveraged
in recent quantum neural network implementations to
enhance computational capacity.

4. Undamped regime (Fig. 5(d) for γ = 0)
A critical transition occurs in this regime, where
some Lyapunov exponents become positive within
specific frequency intervals, confirming the onset of
chaotic behavior. These chaotic regimes are inter-
spersed with regular (non-chaotic) windows, exhibit-
ing intermittency—a hallmark of many nonlinear sys-
tems that can be harnessed for chaos-based comput-
ing applications. Moreover, the presence of extensive
frequency ranges in Ω1p supporting hyperchaotic dy-
namics highlights the system’s potential usefulness
for cryptographic applications and secure communi-
cations.

The transition to chaos as damping decreases can be un-
derstood as a competition between energy dissipation and
nonlinear energy transfer combined with external pump-
ing. When damping is sufficiently strong, energy dissipa-
tion dominates, suppressing nonlinear mode interactions and
maintaining stable system behavior. As damping weakens,
nonlinear coupling and pumping effects gain prominence, fa-
cilitating nontrivial energy exchanges that can lead to chaotic
dynamics once dissipation is no longer able to contain them.
In the context of quantum hardware, this insight is valuable
for designing dissipation engineering strategies aimed either
at preserving system stability or at deliberately inducing con-
trolled chaos for specialized applications.

A similar stability analysis was carried out for the sand-
wich configuration shown in Fig. 1 (with ϵ13 = 0). Under
parameters analogous to those in Fig. 5, the system exhibits
comparable behavior, as illustrated in Fig. 6. Notably, the
regions of chaos and hyperchaos expand in the absence of
damping, reflecting a reduction in overall stability. This de-
creased stability arises from the increased asymmetry of the
system: in the sandwich arrangement, the central Kerr oscil-
lator couples to both neighbors, whereas each outer oscilla-
tor is coupled to only one neighbor.

To confirm that the observed chaotic behavior is genuine
and not a numerical artifact, we performed several validation
tests:

• Varying the integration step size and GSR intervals to
verify numerical convergence.

• Testing multiple sets of initial conditions to ensure
consistent Lyapunov spectra across simulations.

• Calculating the correlation dimension, which con-
firmed the fractal nature of the attractors in the chaotic
regimes.

Furthermore, we investigated how the transition to chaos
depends on coupling strengths. We found that increasing
the coupling parameters ϵ12, ϵ13, and ϵ23 lowers the criti-
cal damping threshold for chaos, confirming that the non-
linear coupling is indeed the mechanism driving the chaotic
behavior. This is particularly visible for the sandwich con-
figuration, which confirms the leading role of not only the
coupling but also the asymmetry of the coupler system
(Fig. 7). The Lyapunov exponents clearly indicate a marked
increase in the system’s instability (Fig. 7(d)). This finding
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Fig. 5. Lyapunov exponents λ1–λ6 for the triangular arrangement (ϵ12 = ϵ13 = ϵ23 = 0.001) of the Kerr couplers as a function of pumping
frequency Ω1p of the first oscillator and for different damping constants: (a) γ1 = γ2 = γ3 = γ = 0.005, (b) γ = 0.001, (c) γ = 0.0002,
(d) γ = 0. Other system parameters are the same as in Fig. 2. Note the qualitative change in system behavior as the damping decreases: in

panel (d), the emergence of positive Lyapunov exponents signals the onset of chaotic—and potentially hyperchaotic—dynamics.

is particularly relevant for quantum computing implementa-
tions, where coupling strengths can be precisely controlled
to achieve desired stability characteristics.

VI. Chaotic Beats

In certain coupled nonlinear systems, it is possible to
observe a distinctive dynamical behavior known as chaotic
beats. This phenomenon was first numerically identified
in a system of two coupled Kerr and Duffing oscillators
[58]. Since then, chaotic beats have been reported in vari-
ous systems, including Chua’s circuit [59], coupled second-
harmonic generators of light [60], and memristive-driven
Chua circuits [61]. Notably, the phenomenon has also been
demonstrated experimentally in an electronic setup consist-

ing of two forced dissipative LCR oscillators sharing a non-
linear element [62].

In general, chaotic beats refer to signals where the enve-
lope of amplitude modulation exhibits chaotic fluctuations,
while the underlying carrier frequency remains nearly con-
stant. This phenomenon typically arises in weakly coupled
nonlinear systems. Interestingly, in the case of a system of
three coupled Kerr oscillators, we identified a specific set of
parameters for which chaotic beats emerge even under strong
coupling conditions. In this configuration, the intensity of
the first oscillator, defined as I1(t) = |a1(t)|2, evolves—
after an initial period of strongly chaotic transients—into a
regime of persistent, stationary-like chaotic beats, as illus-
trated in Fig. 8. Further analysis reveals that, as the value
of the pumping frequency Ω1p increases, the system gradu-
ally loses its beat-like characteristics and transitions into a
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Fig. 6. Lyapunov exponents λ1–λ6 for the sandwich arrangement (ϵ13 = 0, ϵ12 = ϵ23 = 0.001) of the Kerr couplers as a function of
pumping frequency Ω1p of the first oscillator and for different damping constants: (a) γ1 = γ2 = γ3 = γ = 0.005, (b) γ = 0.001, (c)

γ = 0.0002, (d) γ = 0. Other system parameters are the same as in Fig. 2.

regime of purely chaotic behavior.

VII. Quantum Computing Applications and
Experimental Implementations

Our analysis of three coupled Kerr oscillators carries im-
portant implications for emerging quantum computing tech-
nologies. Although the present treatment is classical, the sta-
bility regimes we have identified remain highly relevant for
mesoscopic and macroscopic systems where classical and
quantum types of behavior coexist. In this section, we ex-
plore the connection between our results and recent advance-
ments in quantum computing, particularly in the context of
experimental platforms that utilize nonlinear oscillators and
engineered dissipation.

VII. 1. Advantages of three-oscillator systems
Three coupled Kerr oscillators represent a critical min-

imum configuration for several quantum computing appli-
cations that cannot be realized with simpler two-oscillator
systems:

1. Enhanced computational basis: The multiple stable
attractors we identified (as summarized in Tab. 1) pro-
vide an expanded state space for information encod-
ing. In quantum computing implementations based on
Kerr parametric oscillators (KPOs), these states can
represent distinct computational basis states [12].

2. Triangular coupling topology: The triangular con-
figuration enables genuine three-body interactions that
cannot arise in systems with only two oscillators. Re-
cent work by Margiani et al. [12] demonstrated that a
system of three strongly coupled KPOs can function
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Fig. 7. Lyapunov exponents λ1–λ6 for the sandwich arrangement of the Kerr couplers under strong coupling conditions (ϵ13 = 0, ϵ12 =
ϵ23 = 0.01) as a function of pumping frequency Ω1p of the first oscillator and for different damping constants: (a) γ1 = γ2 = γ3 = γ =

0.005, (b) γ = 0.001, (c) γ = 0.0002, (d) γ = 0. Other system parameters are the same as in Fig. 2.

as a Boltzmann machine capable of simulating Ising
Hamiltonians. This architecture has direct applications
in solving combinatorial optimization problems and
highlights the computational potential of nonlinear os-
cillator networks.

3. Error correction capabilities: Systems composed of
three coupled oscillators support redundant encoding
schemes that enhance robustness against noise and
decoherence—key requirements for scalable quantum
computing. Our stability analysis identifies the param-
eter regimes in which such error-resilient encoding
is most effective, offering guidance for the design of
quantum architectures with improved fault tolerance.

VII. 2. Experimental platforms
Recent experimental advances have made the implemen-

tation of coupled Kerr oscillator systems increasingly feasi-
ble:

1. Superconducting circuits: Superconducting circuits
have emerged as a leading platform for realizing cou-
pled Kerr parametric oscillators (KPOs) in quantum
computing [6, 9]. Recent experiments have demon-
strated high-fidelity quantum gate operations using
KPOs, including Rx gates via parity-selective tran-
sitions [11], and two-qubit Rzz gates with fidelities
exceeding 99.9% in systems of highly detuned KPOs
[53].

2. Integrated photonics: Silicon nitride microres-
onators have demonstrated high-efficiency optical
parametric oscillation with conversion efficiencies
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Fig. 8. Chaotic beats in the first Kerr oscillator. Time evolution of the intensity I1(t) = |a1(t)|2 is shown for the case of strong coupling
in the sandwich configuration, with pumping frequency Ω1p = 1. All other parameters are the same as in Fig. 7(d). Panel (a) illustrates

the initial strongly chaotic transient regime, while panel (b) displays the subsequent emergence of a stationary chaotic beat pattern.

reaching 29% [8]. These platforms benefit from scal-
ability and compatibility with existing semiconductor
manufacturing technologies. For example, in situ con-
trol of integrated Kerr nonlinearity with a tuning range
of 10 dB has recently been demonstrated [7], enabling
dynamic modulation of nonlinear interactions in su-
perconducting quantum circuits.

3. Commercial implementations: IBM’s Quantum Sys-
tem Two, introduced in 2023, marks a significant mile-
stone in the commercial advancement of quantum pro-
cessors based on coupled nonlinear oscillators. The
system is capable of executing up to 1800 quantum
gates within coherence times—nearly quadrupling the
capacity of previous-generation devices [10].

The critical damping thresholds identified in Section V
offer valuable guidance for experimental implementations
by delineating parameter regimes that ensure stable opera-
tion versus those prone to chaotic transitions. This insight
is especially pertinent for superconducting circuit platforms,
where damping rates can be precisely engineered.

VII. 3. Potential applications for quantum computing
The distinct dynamical regimes revealed by our Lya-

punov exponent analysis correspond to specific operational
modes with direct applications in quantum computing:

1. Quantum gates: The stable regime characterized
by negative Lyapunov exponents is ideal for imple-
menting reliable quantum gates. Recent experiments
have demonstrated that KPOs can perform both high-
fidelity single-qubit operations and entangling gates
[11].

2. Quantum neural networks: The near-critical regime,
where Lyapunov exponents approach zero yet remain
negative (Fig. 5(c)), offers enhanced computational
capacity well-suited for quantum neural networks. Re-
cent studies have demonstrated that even with just two

coupled quantum oscillators, a quantum reservoir con-
taining up to 81 effective neurons can be realized,
achieving 99% accuracy on benchmark tasks [18].

3. Chaos-based computing: The chaotic regime with
positive Lyapunov exponents can be exploited for spe-
cialized computing tasks, including quantum random
number generation and quantum cryptography. Con-
trolled chaotic behavior in optical systems has been
demonstrated as an effective mechanism for generat-
ing high-entropy random bit streams [17].

Our analysis of the impact of coupling configurations
on attractor properties (Table 1) is particularly relevant for
quantum computing applications that demand precise con-
trol over system dynamics. Notably, the observation that
sandwich configurations support larger secondary and ter-
tiary attractors indicates that the deliberate removal of spe-
cific couplings can enhance particular computational func-
tionalities.

VIII. Comparative analysis and future work

VIII. 1. Comparison with two-oscillator systems
Our three-oscillator system shares certain features with

the two-oscillator case studied by Śliwa and Grygiel [13],
such as multiple attractors and parameter-dependent dynam-
ics. However, the addition of a third oscillator gives rise to
novel phenomena and richer dynamical behavior, including:

1. Increased attractor complexity: The three-oscillator
system supports a richer set of attractors, including
the tertiary attractor not observed in the two-oscillator
case. This can be attributed to the additional degrees
of freedom and coupling pathways.

2. Configuration-dependent dynamics: The triangular
versus sandwich configurations exhibit distinct dy-
namical properties, with sandwich configurations sup-
porting larger secondary and tertiary attractors. This
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indicates that in certain parameter regimes, reduced
coupling can counter-intuitively enhance intensity of
the process.

3. Lower chaos threshold: Compared to the two-
oscillator system, our three-oscillator system transi-
tions to chaos at higher damping values, indicating in-
creased dynamical complexity.

VIII. 2. Physical mechanisms
The multiple attractors observed in our system arise from

nonlinear mode competition. The nonlinear coupling terms
in Eqs. (7)–(9) facilitate energy exchange between oscilla-
tors, creating a complex energy landscape with multiple lo-
cal minima that correspond to distinct stable oscillation pat-
terns.

The transition to chaos as damping decreases reflects the
delicate balance between energy dissipation and nonlinear
energy transfer. When damping is sufficiently strong, dissi-
pation dominates, yielding simple and stable attractor struc-
tures. As damping weakens, nonlinear energy transfer gains
prominence, ultimately driving the system into chaotic dy-
namics once dissipation can no longer offset these nonlinear
effects.

VIII. 3. Connection to quantum-classical
correspondence

While our analysis is classical, it provides insights into
the behavior of quantum Kerr systems in the semiclassical
regime where photon numbers are large. Recent research
has established connections between classical Lyapunov ex-
ponents and quantum chaos indicators such as out-of-time-
ordered correlators (OTOCs) [63].

The stable attractors we identified correspond to coher-
ent states in the quantum description, while the chaotic re-
gions relate to situations where quantum states exhibit rapid
entanglement growth and delocalization. This quantum-
classical correspondence is particularly relevant for super-
conducting circuit implementations, which often operate in
a mesoscopic regime where both classical and quantum ef-
fects are important.

VIII. 4. Limitations and future work
Several limitations of our current model should be ac-

knowledged:

1. Classical approximation: Our analysis is entirely
classical, neglecting quantum effects that may become
significant at low field intensities or in specialized
configurations designed to enhance quantum correla-
tions.

2. Simplified coupling: The coupling terms in our
model represent instantaneous interactions, neglecting
potential time delays and frequency-dependent effects
that may occur in real optical systems.

3. Parameter restrictions: We have focused on sym-
metric configurations with identical oscillator param-
eters ϵj to isolate the effects of coupling topologies,

but asymmetric parameters could reveal additional in-
teresting dynamics.

Future work could address these limitations by:

• Extending the model to include quantum effects, po-
tentially revealing connections to quantum chaos.

• Investigating asymmetric configurations with varied
oscillator parameters.

• Exploring the effects of time-delayed coupling, which
could introduce additional complexity and potential
applications in reservoir computing.

• Developing control strategies to stabilize desired at-
tractors or to switch between attractors for optical
routing applications.

IX. Conclusions

This paper has presented a comprehensive stability anal-
ysis of three coupled Kerr oscillators in both triangular and
sandwich configurations, providing new insights into the dy-
namics of coupled nonlinear optical systems with signifi-
cant implications for quantum computing. Through numer-
ical simulations and Lyapunov exponent analysis, we have
characterized the system’s behavior across different parame-
ter regimes, with particular focus on the transition from reg-
ular to chaotic dynamics.

Our key findings can be summarized as follows:

1. Multiple stable attractors: The subsystem consisting
of the first oscillator exhibits three distinct circular at-
tractors with different radii in phase space, dependent
on initial conditions. The complex basin structure of
these attractors reveals the intricate nature of the un-
derlying dynamics. In quantum computing implemen-
tations, these distinct states can serve as computational
basis states for information encoding.

2. Configuration-dependent properties: The coupling
configuration (triangular vs. sandwich) significantly
affects the attractor properties and system frequencies.
Counterintuitively, removing specific couplings in the
sandwich configurations leads to larger secondary and
tertiary attractors compared to the fully-coupled trian-
gular arrangement. This finding has important impli-
cations for quantum hardware design, indicating that
modifying coupling configurations can substantially
enhance computational performance.

3. Damping-controlled transition to chaos: Lyapunov
exponent analysis reveals a transition from stable to
chaotic dynamics as damping decreases. We iden-
tify critical damping thresholds below which chaos
emerges, with the undamped system (γ = 0) exhibit-
ing fully developed chaos marked by positive Lya-
punov exponents. Understanding these stability char-
acteristics is essential both for designing quantum op-
erations with predictable performance and for appli-
cations that intentionally leverage chaos for computa-
tional advantage.



Stability Analysis of Three Coupled Kerr Oscillators 13

4. Frequency-dependent stability windows: Even in
chaotic regimes, certain pumping frequencies support
islands of stability, suggesting the possibility of con-
trolling the system’s behavior through careful parame-
ter selection. This frequency dependence could be ex-
ploited for frequency-selective quantum operations or
for implementing multi-frequency encoding schemes.

5. Chaotic beats: The considered system can generate
characteristic signals, so-called chaotic beats. Unex-
pectedly, these chaotic beats were found in the case
of strong coupling of the three Kerr oscillators—
typically, this effect occurs in weakly coupled sys-
tems. The multitude of parameters and the resulting
richness of dynamical behaviors suggest that this spe-
cific type of system dynamics can emerge across a
wide range of coupler parameter configurations.

The significance of these results extends beyond the spe-
cific system studied here. The mechanisms of transition to
chaos that we have identified—involving the competition be-
tween nonlinear coupling and dissipation—are likely appli-
cable to a wide range of coupled nonlinear oscillator sys-
tems. Our findings on how coupling topology affects stabil-
ity may inform the design of nonlinear optical devices where
controlled chaos or switching between multiple stable states
is desired.

In the context of quantum computing, our work con-
tributes to the understanding of Kerr parametric oscilla-
tor systems that are being increasingly utilized as funda-
mental building blocks in quantum processors. The stabil-
ity analysis we have presented provides insights into param-
eter regimes suitable for implementing high-fidelity quan-
tum gates, error-resilient encoding schemes, and specialized
computing paradigms like quantum neural networks.

Potential applications of these results include optical
switches based on controlled transitions between attractors,
secure communications leveraging chaotic dynamics, ran-
dom number generation using the unpredictable nature of
the chaotic regime, multi-state optical memory elements uti-
lizing the system’s multiple attractors, quantum gate imple-
mentations in superconducting circuit platforms, and error
correction schemes exploiting the enhanced stability of spe-
cific parameter regimes.

Future work will focus on extending this analysis to
asymmetric configurations, including time-delayed coupling
effects, and developing experimental implementations to
verify our theoretical predictions. Additionally, exploring the
quantum analogs of these classical dynamics may reveal new
phenomena at the quantum-classical boundary, particularly
in the context of quantum chaos and its applications in quan-
tum information processing.
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[27] W. Leoński, A. Kowalewska-Kudłaszyk, Quantum
Scissors: Finite-Dimensional States Engineering, Prog.
Opt. 56, 131 (2011).

[28] A. Miranowicz et al., Two-photon and three-photon
blockades in driven nonlinear systems, Phys. Rev. A
87, 023809 (2013).

[29] C. Hamsen, K. N. Tolazzi, T. Wilk, G. Rempe, Two-
Photon Blockade in an Atom-Driven Cavity QED Sys-
tem, Phys. Rev. Lett. 118, 133604 (2017).

[30] A. Kowalewska-Kudłaszyk et al., Two-photon block-
ade and photon-induced tunneling generated by
squeezing, Phys. Rev. A 100, 053857 (2019).

[31] R. Huang et al., Nonreciprocal Photon Blockade, Phys.
Rev. Lett. 121, 153601 (2018).

[32] Y. Zuo et al., Chiral photon blockade, Opt. Express 32,
22020-22030 (2024).

[33] Y.-X. Liu et al., Qubit-induced phonon blockade as a
signature of quantum behavior in nanomechanical res-
onators, Phys. Rev. A 82, 032101 (2010).

[34] S. Abo et al., Hybrid photon-phonon blockade, Sci.
Rep. 12, 17655 (2022),
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