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Abstract: We investigate the classical dynamics of optical nonlinear Kerr couplers, focusing on their potential relevance to
quantum computing applications. The system consists of three Kerr-type nonlinear oscillators arranged in two configura-
tions: a triangular arrangement, where each oscillator is coupled to the others, and a sandwich arrangement, where only the
middle oscillator interacts with the two outer ones. The system is driven by an external periodic field and subject to dissipa-
tive processes. Its evolution is governed by six non-autonomous differential equations derived from a Kerr Hamiltonian with
nonlinear coupling terms. We demonstrate that even for identical Kerr media, the interplay between nonlinear couplings
and mismatched fundamental and pump frequencies gives rise to rich and complex dynamics, including the emergence of
multiple stable attractors. These attractors are highly sensitive to both the coupling configuration and initial conditions.
A key contribution of this work is a detailed stability analysis based on numerical calculation of Lyapunov exponents, re-
vealing transitions from regular to chaotic dynamics as damping is reduced. We identify critical damping thresholds for the
onset of chaos and characterize phenomena such as chaotic beats. These findings offer insights for potential experimental
realizations and are directly relevant to emerging quantum technologies, where Kerr parametric oscillators play a central
role in quantum gates, error correction protocols, and quantum neural network architectures.
Key words: Kerr oscillators, Lyapunov exponents, quantum technology, chaotic beats

I. Introduction

Nonlinear optical systems based on the Kerr effect have
emerged as a key area of overlap between classical non-
linear dynamics and quantum information science. Exten-
sive research on such systems has explored both the classi-
cal [1, 2] and quantum [3–6] properties of the generated op-
tical fields, offering valuable insights into fundamental phys-
ical processes and enabling a range of practical applications
(as briefly reviewed in Sec. II). In particular, systems of cou-
pled oscillators with Kerr-type nonlinearity have garnered

significant interest due to their rich dynamical behavior and
potential applications in optical signal processing, all-optical
switching, and, more recently, quantum information process-
ing.

The nonlinear Kerr effect, characterized by an intensity-
dependent refractive index, facilitates self-phase modula-
tion and enables complex interactions when multiple opti-
cal fields are coupled. In systems of coupled Kerr oscilla-
tors, this nonlinearity gives rise to a wide spectrum of dy-
namical behaviors, from regular periodic motion to intricate
chaotic dynamics. This richness makes such systems valu-
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able both for advancing theoretical understanding and for
enabling diverse technological applications. Recent progress
in nanophotonics and integrated optics has significantly im-
proved the feasibility of experimentally realizing these sys-
tems (see [7] and references therein). Notably, silicon nitride
microresonators have demonstrated high-efficiency optical
parametric oscillation, achieving conversion efficiencies of
up to 29% [8].

A particularly significant development is the recent
emergence of Kerr parametric oscillators (KPOs) as promis-
ing building blocks for quantum processors, especially in
superconducting circuit platforms [6, 9, 10]. Over the past
few years (2022–2025), these systems have demonstrated
key advantages, including high gate fidelities, enhanced er-
ror resilience, and increased computational capabilities [11].
The extension from two to three coupled oscillators – the
central focus of this work – represents a critical thresh-
old, enabling quantum functionalities unattainable in simpler
configurations. Three-oscillator systems exhibit significantly
richer phase-space structures, supporting up to eight stable
fixed points under specific parameter regimes [12], thereby
offering an expanded state space for quantum information
encoding and manipulation.

The mathematical description of three coupled KPOs in
the quantum regime involves a Hamiltonian comprising mul-
tiple nonlinear interaction terms:

H =
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i=1
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2
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2
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†
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†
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where ∆i denotes the detuning frequency, Ki the Kerr non-
linearity strength, pi the pumping amplitude, and Jij the
coupling strength between oscillators. While this Hamilto-
nian formulation applies to the few-photon quantum regime,
our classical analysis offers complementary insights into the
system’s behavior in higher-excitation regimes, particularly
concerning stability, multistability, and the onset of chaos.

In the commercial sector, quantum computing platforms
based on coupled nonlinear oscillators are beginning to take
shape. A notable example is IBM’s Quantum System Two,
launched in 2023, which introduced the first modular quan-
tum computer featuring three coupled Heron processors.
This architecture supports the execution of up to 1800 quan-
tum gates within coherence times – nearly quadrupling the
capacity of earlier systems [10]. Such advances highlight the
growing importance of a detailed understanding of multi-
oscillator Kerr systems, from both theoretical and practical
perspectives.

Earlier work by Śliwa and Grygiel [13] explored the
dynamics of two coupled Kerr oscillators, uncovering rich
phase-space structures characterized by multiple coexisting
attractors and transitions between regular and chaotic be-
havior. Building on their findings, the present study extends
the framework to three coupled oscillators, introducing ad-
ditional degrees of freedom and novel coupling topologies.
These extensions give rise to significantly more intricate dy-

namical behavior, enabling the exploration of new stability
regimes and potential applications in quantum information
processing.

It is also worth highlighting previous fully quantum-
mechanical treatments of triple Kerr oscillator couplers. No-
tably, Kalaga et al. [14] demonstrated that such a system can
function as a nonlinear quantum scissors device and effec-
tively operate as a three-qubit model. More recently, Hanapi
et al. [15] investigated an optical coupler composed of three
second-harmonic generation systems, focusing on the gen-
eration of nonclassical optical fields. However, these studies
primarily concentrated on quantum aspects. In contrast, our
present work emphasizes the classical regime, particularly
through a detailed stability analysis using Lyapunov expo-
nents – an approach that, to our knowledge, has not yet been
applied to systems of three coupled Kerr oscillators.

The study of chaotic dynamics in nonlinear optical
systems holds both fundamental and practical importance.
On a fundamental level, it sheds light on the mechanisms
governing the transition from regular to chaotic behavior
in complex nonlinear systems. From a practical perspec-
tive, controlled chaos has been proposed for diverse appli-
cations, including secure optical communication [16], high-
speed random number generation [17], and photonic reser-
voir computing [18].

Fig. 1. Cross-sections of two coupling configurations: the triangu-
lar arrangement (top), in which all three oscillators are mutually
coupled; and the sandwich arrangement (bottom), where the mid-
dle oscillator is coupled to both outer oscillators, while the first and

third have no direct coupling
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This paper builds upon previous research by systemat-
ically analyzing the dynamics and stability of three cou-
pled Kerr oscillators under various coupling configurations.
Our primary focus is on the influence of nonlinear couplings
on system stability and phase-space evolution, with partic-
ular attention to the onset of chaos as key parameters are
varied.

The novel contributions of our study include: (1) a com-
parative analysis of both triangular and sandwich coupling
topologies (Fig. 1); (2) a comprehensive Lyapunov exponent
analysis identifying transitions to chaotic regimes; (3) the
discovery of multiple coexisting stable attractors with dis-
tinct phase-space structures dependent on coupling parame-
ters, along with a mapping of their basins of attraction; and
(4) the demonstration of signal patterns known as chaotic
beats, generated by the system under specific conditions.

Before introducing our model and presenting its numeri-
cal solutions, we first highlight the significance of the optical
Kerr effect in contemporary quantum nonlinear physics.

II. On the Fundamental and Practical Role
of the Optical Kerr Effect

Although this paper focuses on the classical Kerr model,
the underlying phenomena are highly relevant to quantum
technologies due to their fundamental significance and wide
range of applications.

The optical Kerr effect plays a central role in quan-
tum state engineering and quantum information processing
(QIP), attracting sustained interest due to its rich nonlinear
dynamics and broad applicability across various platforms
in quantum optics and related fields. These include cavity
quantum electrodynamics (QED) [4], circuit QED (based
on superconducting quantum circuits coupled to microwave
resonators) [6, 9], atom optics (using Rydberg atoms, cold
atomic gases, and Bose-Einstein condensates) [19], as well
as cavity optomechanical systems (see, e.g., [20, 21]). More-
over, Kerr-type systems serve as prototypical models for ex-
ploring chaotic dynamics and nonlinear quantum control,
which are the central focus of this paper.

A qubit – whether a natural or artificial atom such as a su-
perconducting circuit – dispersively coupled to a resonator
(e.g., transmission line resonator) provides a versatile plat-
form for exploring Kerr-type light-matter interactions. In this
dispersive limit, the qubit induces measurable frequency and
phase shifts in the resonator’s spectrum, enabling effective
Kerr nonlinearities. This approach is widely employed to
realize Kerr-type interactions, particularly when the qubit-
resonator (i.e., light-matter) coupling reaches the strong, ul-
trastrong, or even deep-strong regimes [22, 23].

The Kerr effect, which induces an intensity-dependent
refractive index, gives rise to a variety of nonlinear opti-
cal phenomena, including dispersive optical bistability [5],
self-focusing and self-phase modulation [24]. It also plays
a central role in quantum light control by enabling photon
blockade – an effect that suppresses the absorption of mul-
tiple photons, thereby allowing for the generation of sin-
gle photons [25, 26]. This effect has been demonstrated

in numerous experiments (see [6, 27] for references). Be-
yond single-photon blockade, the Kerr effect enables a wide
range of advanced phenomena, such as multi-photon block-
ade [28–30]; nonreciprocal [31] and chiral [32] photon
blockade effects; phonon blockade, in which mechanical ex-
citations (phonons) are suppressed [33]; and hybrid photon-
phonon blockade [34]. Photon [35, 36] and phonon [37]
blockade effects in coupled Kerr oscillator systems have also
been investigated as mechanisms for generating maximally
entangled states, such as Bell states. Further studies of two
coupled Kerr oscillators have led to the prediction of uncon-
ventional photon blockade [38], including its nonreciprocal
variant [39], where even very weak Kerr nonlinearities can
enable high-fidelity single-photon generation.

Beyond enabling the generation of Fock and Bell states
via photon blockade, Kerr nonlinearity serves as a versa-
tile resource for producing a broad spectrum of nonclassical
states of light [40]. For example, it enables the creation of
highly squeezed states [41–44], as well as macroscopically
distinguishable quantum superpositions of coherent states,
including the celebrated Schrödinger cat states [45, 46]
and their multi-component analogs, often referred to as
Schrödinger kitten states [47], which were experimentally
realized in [48–50].

The Kerr effect is also fundamental to implement-
ing quantum gates and performing quantum nondemolition
(QND) measurements, where it facilitates the indirect obser-
vation of quantum states without destroying them [3, 51, 52],
as demonstrated in several landmark experiments (see [19]
for details). Among the various proposals for Kerr-based
quantum gates (see, e.g., [11, 53, 54] and references therein),
a particularly notable example is the implementation of
fault-tolerant multi-qubit geometric entangling gates using
photonic cat states generated by N Kerr nonlinear oscillators
coupled to a common harmonic resonator [55]. That Kerr-
based proposal is arguably superior to other quantum gate
implementations based on bosonic codes (see Tab. 1 in [55]),
offering higher gate fidelities and less demanding coherence
requirements in terms of energy relaxation time (T1) and de-
phasing time (T2).

Many of these applications critically depend on achiev-
ing strong Kerr nonlinearity at the few-photon level. Vari-
ous strategies have been proposed and experimentally ex-
plored to enhance this nonlinearity. In addition to the meth-
ods demonstrated in, e.g., Refs. [48–50], a particularly note-
worthy approach involves the sequential application of two-
photon squeezing processes – governed by the second-order
nonlinear susceptibility χ(2) – to systems with initially weak
Kerr nonlinearity, which arises from the third-order suscep-
tibility χ(3) [23, 56]. This method enables, at least theoreti-
cally, an exponential enhancement of the Kerr nonlinearity.

These capabilities make the Kerr effect indispensable for
both fundamental studies in nonlinear optics and the devel-
opment of practical quantum technologies.

III. Model and Its Dynamics

The dynamics of a system comprising three coupled Kerr
oscillators extends the two-oscillator model previously an-
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alyzed in [13]. Introducing a third oscillator, coupled non-
linearly and operating at a distinct frequency, enriches the
system’s behavior and is governed by the following Hamil-
tonian:

H = H0 +H1 +H2, (2)

where

H0 =
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2
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)]
. (5)

The Hamiltonian H0 describes three independent Kerr os-
cillators, where ωj denote their natural frequencies and ϵj
quantify the strength of the Kerr nonlinearities. The term H1

accounts for nonlinear interactions between oscillator pairs,
with ϵ12, ϵ13, and ϵ23 representing the respective coupling
strengths. Finally, H2 captures the interaction of each oscil-
lator with external driving fields, where Fj are the driving
amplitudes and Ωjp the corresponding pump frequencies.

The equations of motion for the complex variables a1,
a2, and a3 are derived from the Hamiltonian via the relation:

ȧj = −i
∂H

∂a∗j
− γjaj , (6)

where the final term accounts for dissipation, with γj denot-
ing the damping rates. Thus, we obtain:
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∗
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2
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∗
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∗
1a1 + F3e

−iΩ3pt − γ3a3. (9)

The coupled nonlinear differential equations (7)–(9) define
a six-dimensional dynamical system when decomposed into
the real and imaginary parts of each complex variable aj
(j = 1, 2, 3), representing the optical field in each section
of the coupler. For each oscillator, the evolution depends on
its intrinsic frequency, Kerr nonlinearity, nonlinear coupling

to the other oscillators, external driving forces, and energy
dissipation.

The damping terms −γjaj are essential to our stability
analysis, as they characterize energy dissipation within the
system. These terms critically influence whether the system
settles into periodic oscillations or evolves into chaotic dy-
namics. For specific parameter regimes, the equations admit
periodic solutions of the form:
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only if the pumping frequencies satisfy:
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and the initial conditions are:

aj0 = aj(t = 0) =
Fj

γj
, where j = 1, 2, 3. (14)

In phase space, these periodic solutions satisfy the following
equations:

|aj |2 =
F 2
j

γ2
j

. (15)

For our analysis, we focus on a system with the fol-
lowing parameters: ω1 = 1, ω2 = 0.5, ω3 = 0.25,
ϵ1 = ϵ2 = ϵ3 = 0.01, F1 = F2 = F3 = 5, γ1 =
= γ2 = γ3 = 0.5, Ω1p = 2.2, Ω2p = 1.7, Ω3p = 1.45,
and ϵ12 = ϵ13 = ϵ23 = 0.001 (triangular configuration).
With these parameters, the oscillators trace circular trajecto-
ries in phase space, each with a radius of 10, and oscillate at
frequencies of 2.2, 1.7, and 1.45, respectively.

The coupling configurations we examine correspond to
distinct arrangements of the three oscillators, as illustrated
in Fig. 1. In the triangular arrangement, each oscillator is di-
rectly coupled to the other two, forming a fully connected
network. In contrast, the sandwich arrangement features the
middle oscillator coupled to both outer oscillators, with
no direct interaction between the outer pair. These distinct
topologies give rise to markedly different dynamics and sta-
bility characteristics. Notably, these coupling schemes have
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direct analogues in quantum computing architectures, where
specific coupling geometries can be engineered to realize tar-
geted computational functionalities – for example, in the de-
sign of fiber couplers.

Furthermore, the system is six-dimensional and gov-
erned by 18 parameters. Exhaustively exploring all parame-
ter combinations is practically infeasible. Consequently, it is
necessary to focus on a carefully selected subset of param-
eters and thoroughly analyze the system’s behavior within
this reduced parameter space.

IV. Phase-Space Trajectories and Attractor Structure

The phase-space analysis of the system (7)–(9) reveals
key dynamical properties. For initial conditions a′j0 =
= Re aj0 = 10 and a′′j0 = Im aj0 = 0 (j = 1, 2, 3), the
phase points of all three subsystems follow circular trajecto-
ries of radius 10, as described by equations (10)–(12), with
frequencies Ω1p = 2.2, Ω2p = 1.7, and Ω3p = 1.45. How-
ever, when the initial condition of the first subsystem is var-
ied – while keeping a′j0 = 10 and a′′j0 = 0 fixed for j = 2, 3
– multiple attractors emerge.

Fig. 2. Time evolution of Re(a1(t)) for the first oscillator sub-
system, with parameters: ω1 = 1, ω2 = 0.5, ω3 = 0.25; ϵ1 =
= ϵ2 = ϵ3 = 0.01; F1 = F2 = F3 = 5; γ1 = γ2 = γ3 = 0.5;
Ω1p = 2.2, Ω2p = 1.7, Ω3p = 1.45; and coupling strengths
ϵ12 = ϵ13 = ϵ23 = 0.001 (triangular configuration). Initial
conditions: (a) Re aj0 = 10 and Im aj0 = 0 for j = 1, 2, 3;
(b) Re a10 = 48, Im a10 = −48, Re a20 = 10, Im a20 = 0,

Re a30 = 10, Im a30 = 0

Fig. 3. Phase-space trajectories of the first Kerr oscillator with pa-
rameters as in Fig. 2, under the triangular configuration and varying
initial conditions: (a) Re a10 = 10, Im a10 = 0, Re a20 = 10,
Im a20 = 0, Re a30 = 10, Im a30 = 0; (b) Re a10 = 0,
Im a10 = 0, Re a20 = 10, Im a20 = 0, Re a30 = 10, Im a30 = 0;
(c) Re a10 = 48, Im a10 = −48, Re a20 = 10, Im a20 = 0,
Re a30 = 10, Im a30 = 0. The trajectories demonstrate conver-
gence toward three distinct attractors with radii: r = 10, r′ =

= 6.457, and r′′ = 4.729, respectively
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To systematically investigate this behavior, we per-
formed numerical simulations in which the initial condi-
tions were varied while the system parameters were fixed.
A fourth-order Runge-Kutta method with adaptive step-size
control was used to ensure both numerical stability and ac-
curacy. Integration was carried out up to t > 1000 (in nor-
malized units) to allow transient dynamics to decay and to
reliably capture the system’s asymptotic behavior.

First, we present the time evolution of the first Kerr oscil-
lator – specifically, the real part of a1(t) – for the triangular
arrangement. Fig. 2(a) shows the purely periodic behavior of
the oscillator when the initial conditions (Re a10, Im a10) lie
on the attractor (i.e., the limit cycle) of radius 10. When the
initial conditions are outside the attractor, transient effects
occur before the system reaches it (as shown in Fig. 2(b) –
in this case, the attractor has a radius of 4.729).

A similar analysis to that shown in Fig. 2 reveals that
the phase point representing the first subsystem eventually
converges to one of three distinct circular attractors:

• the primary attractor, with |a1|2 = 102 (radius r =
= 10),

• the secondary attractor, with |a1|2 = (6.457)2 (radius
r′ = 6.457),

• the tertiary attractor, with |a1|2 = (4.729)2 (radius
r′′ = 4.729).

Fig. 3(a) shows the phase point starting from initial con-
ditions Re a10 = 10, Im a10 = 0, converging to the primary
attractor with radius r = 10 by time t = 150. Fig. 3(b) il-
lustrates convergence to the secondary attractor (radius r′ =
= 6.457) from the initial conditions Re a10 = 0, Im a10 =
= 0. In Fig. 3(c), the phase point beginning at Re a10 = 48,
Im a10 = −48 converges to the tertiary attractor (radius
r′′ = 4.729). In the context of quantum computing, these
distinct stable states can correspond to different computa-
tional states in a multi-state quantum memory.

The basins of attraction for each attractor were
mapped by sampling a grid of initial conditions in the
(Re a10, Im a10) plane, as shown in Fig. 4. We observed that
the basin boundaries exhibit fractal-like structures, reflecting
a high sensitivity to initial conditions – a hallmark of nonlin-
ear systems with multiple attractors.

Tab. 1. Attractor radii and frequencies for different coupling con-
figurations, specifically the triangular arrangement (ϵ12 = ϵ13 =
= ϵ23 = 0.001) and the sandwich arrangement (ϵ13 = 0, ϵ12 =

= ϵ23 = 0.001)

Configuration r r′ r′′ Ω1p Ω2p Ω3p

triangular 10 6.457 4.729 2.2 1.7 1.45

sandwich 10 6.73 5.339 2.1 1.7 1.35

To investigate the influence of coupling configuration,
we compared the triangular arrangement with the sandwich
configuration, in which ϵ13 = 0, meaning there is no di-
rect coupling between the first and third oscillators. Tab. 1
summarizes the properties of the attractors for each configu-
ration.

Fig. 4. Basin of attraction corresponding to the case shown in
Fig. 3. Colors indicate which stable attractor the subsystem con-
sisting of the first oscillator reaches from each initial condition
(Re a10, Im a10): r = 10 (yellow), r = 6.457 (blue), and r =
= 4.729 (green). Asterisks mark the exact initial conditions used
in Fig. 3(a–c). Note that only the attractor with radius r = 10 is

explicitly labeled in the figure

While both configurations exhibit similar transient be-
havior and ultimately converge to circular periodic orbits,
one notable difference emerges: the sandwich configuration
produces larger secondary and tertiary attractors than the tri-
angular one. This counterintuitive finding suggests that re-
ducing the number of couplings can, in certain cases, en-
hance rather than suppress the intensity of specific oscilla-
tion modes – highlighting the intricate and complex nature
of nonlinear interactions in the system. Notably, reducing
the number of couplings introduces greater asymmetry into
the system, which may play a significant role in shaping the
dynamical properties of the coupler. This finding has impor-
tant implications for designing quantum computing architec-
tures, where tailored coupling geometries can be engineered
to achieve desired computational properties.

V. Lyapunov Exponent Analysis
and Transition to Chaos

Lyapunov exponents offer a rigorous means of character-
izing the stability of a dynamical system by quantifying the
rate at which nearby trajectories in phase space diverge or
converge. A positive maximal Lyapunov exponent indicates
exponential divergence of initially close trajectories – a hall-
mark of chaotic behavior. In contrast, a zero maximal expo-
nent corresponds to quasiperiodic dynamics, while a nega-
tive maximal exponent implies periodic behavior, where tra-
jectories remain bounded and converge. The method applied
ranks Lyapunov exponents in descending order. If the largest
exponent is positive, the system is chaotic. If two or more ex-
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ponents are positive, the system is classified as hyperchaotic,
exhibiting even more complex instability.

In quantum computing applications, understanding the
stability characteristics of Kerr oscillator systems is crucial
for designing reliable quantum operations, as chaos can lead
to information loss and decoherence.

For our system of three nonlinearly coupled Kerr oscil-
lators, we employed the method of Wolf et al. [57], which
incorporates the Gram-Schmidt reorthonormalization (GSR)
algorithm. This method tracks the evolution of perturbation
vectors in the tangent space alongside the phase-space tra-
jectory, periodically reorthonormalizing the basis vectors to
avoid numerical instability and ensure accurate computation
of Lyapunov exponents.

The system of equations (7)–(9) defines a six-
dimensional dynamical system. Linearizing around a ref-
erence trajectory yields an additional set of 36 variational
equations – corresponding to six perturbation vectors in six-
dimensional space – required to compute the full Lyapunov
spectrum. Consequently, analyzing the three-oscillator Kerr
coupler involves solving a total of 42 coupled ordinary dif-
ferential equations (ODEs).

Our numerical implementation involved the following
steps:

1. Simultaneous integration of the original system de-
fined by Eqs. (7)–(9) along with the corresponding set
of linearized variational equations.

2. Periodic application of the GSR procedure, typically
every 0.01 time units, to maintain numerical stability
of the tangent space vectors.

3. Accumulation of logarithmic rates of expansion and
contraction along each orthonormal direction in phase
space.

4. Long-time averaging of the accumulated rates, typi-
cally over more than 5000 time units, to ensure con-
vergence and eliminate transient effects.

To ensure the robustness of our numerical procedure, we
validated the results by confirming that the sum of all Lya-
punov exponents approximates the theoretical expectation of
−(γ1 + γ2 + γ3), which reflects the total dissipation in the
system.

The identification of distinct stability regimes is partic-
ularly relevant for quantum computing applications, where
controlled chaotic behavior can be leveraged for specific
tasks such as random number generation and reservoir com-
puting.

Given the system’s high dimensionality and large pa-
rameter space, all Lyapunov spectrum calculations were per-
formed using a fixed set of baseline parameters: ω1 = 1,
ω2 = 0.5, ω3 = 0.25, ϵ1 = ϵ2 = ϵ3 = 0.01, F1 =
= F2 = F3 = 5, Ω2p = 1.7, and Ω3p = 1.45. The ini-
tial conditions were: Re aj0 = 10, Im aj0 = 0 (j = 1, 2, 3).
Fig. 5 presents the key results of our analysis of the Lya-
punov exponent spectrum for the triangular configuration
(ϵ12 = ϵ13 = ϵ23 = 0.001), plotted as a function of the
pumping frequency Ω1p of the first Kerr oscillator. Each
panel corresponds to a different value of the damping con-
stants, with γ1 = γ2 = γ3 = γ. Several critical observations
emerge from this analysis:

1. Strong damping regime (Fig. 5(a) for γ = 0.005):
All Lyapunov exponents remain negative and approx-
imately constant across the entire frequency range, in-
dicating a strongly dissipative regime. Here, the sys-
tem consistently converges to stable fixed points or
limit cycles, regardless of the pumping frequency.
From a quantum computing perspective, such behav-
ior corresponds to robust and predictable dynamics
– essential for implementing high-fidelity quantum
gates.

2. Intermediate damping regime (Fig. 5(b) for γ =
= 0.001): Although all Lyapunov exponents remain
negative and show similar variation across the pump-
ing frequency range, there are more points of rapidly
increasing exponents, indicating elevated sensitivity to
parameter changes. The smaller magnitudes of the ex-
ponents imply much slower convergence to attractors.
This regime may be advantageous for applications that
benefit from heightened sensitivity to inputs, such as
quantum sensing.

3. Weak damping regime (Fig. 5(c) for γ = 0.0002):
The largest Lyapunov exponents approach zero at spe-
cific frequencies, indicating proximity to critical tran-
sitions. The spectrum exhibits pronounced frequency
dependence, with fluctuations reflecting competing
dynamical regimes. A detailed analysis reveals fre-
quent quasi-periodic states. Similar “edge-of-chaos”
regimes have been exploited in recent quantum neural
network implementations to enhance computational
capacity.

4. Undamped regime (Fig. 5(d) for γ = 0): A criti-
cal transition occurs in this regime, where some Lya-
punov exponents become positive within specific fre-
quency intervals, confirming the onset of chaotic be-
havior. These chaotic regimes are interspersed with
regular (non-chaotic) windows, exhibiting intermit-
tency – a hallmark of many nonlinear systems that can
be harnessed for chaos-based computing applications.
Moreover, the presence of extensive frequency ranges
in Ω1p supporting hyperchaotic dynamics underscores
the system’s potential usefulness for cryptographic ap-
plications and secure communications.

The transition to chaos as damping decreases can be un-
derstood as a competition between energy dissipation and
nonlinear energy transfer combined with external pump-
ing. When damping is sufficiently strong, energy dissipa-
tion dominates, suppressing nonlinear mode interactions and
maintaining stable system behavior. As damping weakens,
nonlinear coupling and pumping effects gain prominence, fa-
cilitating nontrivial energy exchanges that can lead to chaotic
dynamics once dissipation is no longer able to contain them.
In the context of quantum hardware, this insight is valuable
for designing dissipation engineering strategies aimed either
at preserving system stability or deliberately inducing con-
trolled chaos for specialized applications.

A similar stability analysis was performed for the sand-
wich configuration shown in Fig. 1 (with ϵ13 = 0). Under
parameters analogous to those in Fig. 5, the system exhibits
comparable behavior, as illustrated in Fig. 6. Notably, the
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Fig. 5. Lyapunov exponents λ1–λ6 for the triangular arrangement (ϵ12 = ϵ13 = ϵ23 = 0.001) of the Kerr couplers, shown as
a function of the pumping frequency Ω1p of the first oscillator for different damping constants: (a) γ1 = γ2 = γ3 = γ = 0.005,
(b) γ = 0.001, (c) γ = 0.0002, (d) γ = 0. Other system parameters are the same as in Fig. 2. Note the qualitative change in system
behavior as damping decreases: in panel (d), the emergence of positive Lyapunov exponents signals the onset of chaotic – and potentially

hyperchaotic – dynamics

regions of chaos and hyperchaos expand in the absence of
damping, reflecting reduced overall stability. This decreased
stability arises from increased asymmetry of the system: in
the sandwich arrangement, the central Kerr oscillator cou-
ples to both neighbors, whereas each outer oscillator is cou-
pled to only one neighbor.

To confirm that the observed chaotic behavior is genuine
and not a numerical artifact, we performed several validation
tests:

• Varying the integration step size and GSR intervals to
verify numerical convergence.

• Testing multiple sets of initial conditions to ensure
consistent Lyapunov spectra across simulations.

• Calculating the correlation dimension, which con-
firmed the fractal nature of the attractors in the chaotic
regimes.

Furthermore, we investigated how the transition to chaos
depends on the coupling strengths. We found that increasing
the coupling parameters ϵ12, ϵ13, and ϵ23 lowers the criti-
cal damping threshold for chaos, confirming that nonlinear
coupling is indeed the mechanism driving chaotic behavior.
This effect is particularly pronounced in the sandwich con-
figuration, highlighting the leading role of not only the cou-
pling but also the asymmetry of the coupler system (Fig. 7).
The Lyapunov exponents clearly indicate a marked increase
in the system’s instability (Fig. 7(d)). This finding is par-



Stability Analysis of Three Coupled Kerr Oscillators 41

Fig. 6. Lyapunov exponents λ1–λ6 for the sandwich arrangement (ϵ13 = 0, ϵ12 = ϵ23 = 0.001) of the Kerr couplers, shown as a function
of the pumping frequency Ω1p of the first oscillator for different damping constants: (a) γ1 = γ2 = γ3 = γ = 0.005, (b) γ = 0.001,

(c) γ = 0.0002, (d) γ = 0. Other system parameters are the same as in Fig. 2

ticularly relevant for quantum computing implementations,
where coupling strengths can be precisely tuned to achieve
desired stability characteristics.

VI. Chaotic Beats

In certain coupled nonlinear systems, a distinctive dy-
namical behavior known as chaotic beats can be observed.
This phenomenon was first numerically identified in a sys-
tem of two coupled Kerr and Duffing oscillators [58]. Since
then, chaotic beats have been reported in various systems, in-
cluding Chua’s circuit [59], coupled second-harmonic gener-
ators of light [60], and memristive-driven Chua circuits [61].
Notably, the phenomenon has also been demonstrated ex-

perimentally in an electronic setup consisting of two forced
dissipative LCR oscillators sharing a nonlinear element [62].

In general, chaotic beats refer to signals where the enve-
lope of amplitude modulation exhibits chaotic fluctuations
while the underlying carrier frequency remains nearly con-
stant. This phenomenon typically arises in weakly coupled
nonlinear systems. Interestingly, in a system of three coupled
Kerr oscillators, we identified a specific set of parameters for
which chaotic beats emerge even under strong coupling con-
ditions. In this configuration, the intensity of the first oscil-
lator, defined as I1(t) = |a1(t)|2, evolves – after an initial
period of strongly chaotic transients – into a regime of per-
sistent, stationary-like chaotic beats, as illustrated in Fig. 8.
Further analysis reveals that as the pumping frequency Ω1p

increases, the system gradually loses its beat-like character-
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Fig. 7. Lyapunov exponents λ1–λ6 for the sandwich arrangement of the Kerr couplers under strong coupling conditions (ϵ13 = 0, ϵ12 =
= ϵ23 = 0.01), shown as a function of the pumping frequency Ω1p of the first oscillator for different damping constants: (a) γ1 = γ2 =

= γ3 = γ = 0.005, (b) γ = 0.001, (c) γ = 0.0002, (d) γ = 0. Other system parameters are the same as in Fig. 2

istics and transitions into a regime of purely chaotic behav-
ior.

VII. Quantum Computing Applications
and Experimental Implementations

Our analysis of three coupled Kerr oscillators carries im-
portant implications for emerging quantum computing tech-
nologies. Although the present treatment is classical, the
identified stability regimes remain highly relevant for meso-
scopic and macroscopic systems where classical and quan-
tum types of behavior coexist. In this section, we explore
the connection between our results and recent advancements
in quantum computing, particularly in the context of exper-
imental platforms that utilize nonlinear oscillators and engi-
neered dissipation.

VII. 1. Advantages of Three-Oscillator Systems
Three coupled Kerr oscillators represent a critical min-

imum configuration for several quantum computing appli-
cations that cannot be realized with simpler two-oscillator
systems:

1. Enhanced computational basis: The multiple sta-
ble attractors identified (summarized in Tab. 1) pro-
vide an expanded state space for information encod-
ing. In quantum computing implementations based on
Kerr parametric oscillators (KPOs), these states can
represent distinct computational basis states [12].

2. Triangular coupling topology: The triangular con-
figuration enables genuine three-body interactions that
cannot arise in systems with only two oscillators. Re-
cent work by Margiani et al. [12] demonstrated that
a system of three strongly coupled KPOs can function
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Fig. 8. Chaotic beats in the first Kerr oscillator. Time evolution of the intensity I1(t) = |a1(t)|2 is shown for strong coupling in the
sandwich configuration, with pumping frequency Ω1p = 1. All other parameters are the same as in Fig. 7(d). Panel (a) illustrates the initial

strongly chaotic transient regime, while panel (b) displays the subsequent emergence of a stationary chaotic beat pattern

as a Boltzmann machine capable of simulating Ising
Hamiltonians. This architecture has direct applications
in solving combinatorial optimization problems and
highlights the computational potential of nonlinear os-
cillator networks.

3. Error correction capabilities: Systems composed of
three coupled oscillators support redundant encoding
schemes that enhance robustness against noise and de-
coherence – key requirements for scalable quantum
computing. Our stability analysis identifies parameter
regimes in which such error-resilient encoding is most
effective, offering guidance for designing quantum ar-
chitectures with improved fault tolerance.

VII. 2. Experimental Platforms
Recent experimental advances have made the implemen-

tation of coupled Kerr oscillator systems increasingly feasi-
ble:

1. Superconducting circuits: Superconducting circuits
have emerged as a leading platform for realizing cou-
pled Kerr parametric oscillators (KPOs) in quantum
computing [6, 9]. Recent experiments have demon-
strated high-fidelity quantum gate operations using
KPOs, including Rx gates via parity-selective tran-
sitions [11], and two-qubit Rzz gates with fidelities
exceeding 99.9% in systems of highly detuned KPOs
[53].

2. Integrated photonics: Silicon nitride microres-
onators have demonstrated high-efficiency optical
parametric oscillation with conversion efficiencies
reaching 29% [8]. These platforms benefit from scal-
ability and compatibility with existing semiconductor
manufacturing technologies. For example, in situ con-
trol of integrated Kerr nonlinearity with a tuning range
of 10 dB has recently been demonstrated [7], enabling
dynamic modulation of nonlinear interactions in su-
perconducting quantum circuits.

3. Commercial implementations: IBM’s Quantum Sys-
tem Two, introduced in 2023, marks a significant

milestone in the commercial advancement of quan-
tum processors based on coupled nonlinear oscillators.
The system is capable of executing up to 1800 quan-
tum gates within coherence times – nearly quadru-
pling the capacity of previous-generation devices [10].

The critical damping thresholds identified in Sec. V of-
fer valuable guidance for experimental implementations by
delineating parameter regimes that ensure stable operation
versus those prone to chaotic transitions. This insight is espe-
cially relevant for superconducting circuit platforms, where
damping rates can be precisely engineered.

VII. 3. Potential Applications for Quantum Computing
The distinct dynamical regimes revealed by our Lya-

punov exponent analysis correspond to specific operational
modes with direct applications in quantum computing:

1. Quantum gates: The stable regime characterized
by negative Lyapunov exponents is ideal for imple-
menting reliable quantum gates. Recent experiments
have demonstrated that KPOs can perform both high-
fidelity single-qubit operations and entangling gates
[11].

2. Quantum neural networks: The near-critical regime,
where Lyapunov exponents approach zero yet remain
negative (Fig. 5(c)), offers enhanced computational
capacity well-suited for quantum neural networks. Re-
cent studies have demonstrated that even with just two
coupled quantum oscillators, a quantum reservoir con-
taining up to 81 effective neurons can be realized,
achieving 99% accuracy on benchmark tasks [18].

3. Chaos-based computing: The chaotic regime with
positive Lyapunov exponents can be exploited for spe-
cialized computing tasks, including quantum random
number generation and quantum cryptography. Con-
trolled chaotic behavior in optical systems has been
demonstrated as an effective mechanism for generat-
ing high-entropy random bit streams [17].
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Our analysis of the impact of coupling configurations on
attractor properties (Tab. 1) is particularly relevant for quan-
tum computing applications requiring precise control over
system dynamics. Notably, the observation that sandwich
configurations support larger secondary and tertiary attrac-
tors suggests that deliberate removal of specific couplings
can enhance particular computational functionalities.

VIII. Comparative Analysis and Future Work

VIII. 1. Comparison with Two-Oscillator Systems
Our three-oscillator system shares certain features with

the two-oscillator case studied by Śliwa and Grygiel [13],
including the presence of multiple attractors and parameter-
dependent dynamics. However, the addition of a third os-
cillator gives rise to novel phenomena and richer dynamical
behavior, including:

1. Increased attractor complexity: The three-oscillator
system supports a more diverse set of attractors, in-
cluding a tertiary attractor not observed in the two-
oscillator case. This can be attributed to the additional
degrees of freedom and coupling pathways.

2. Configuration-dependent dynamics: The triangular
and sandwich configurations exhibit distinct dynami-
cal properties. In particular, the sandwich configura-
tion supports larger secondary and tertiary attractors,
suggesting that in specific parameter regimes, reduced
coupling can counterintuitively enhance intensity of
the process.

3. Lower chaos threshold: Compared to the two-
oscillator system, our three-oscillator configuration
transitions to chaos at higher damping values, indicat-
ing increased dynamical complexity.

VIII. 2. Physical Mechanisms
The multiple attractors observed in our system arise from

nonlinear mode competition. The nonlinear coupling terms
in Eqs. (7)–(9) facilitate energy exchange between oscilla-
tors, creating a complex energy landscape with multiple lo-
cal minima that correspond to distinct, stable oscillation pat-
terns.

The transition to chaos as damping decreases reflects the
delicate balance between energy dissipation and nonlinear
energy transfer. When damping is sufficiently strong, dissi-
pation dominates, yielding simple and stable attractor struc-
tures. As damping weakens, nonlinear energy transfer gains
prominence, ultimately driving the system into chaotic dy-
namics once dissipation can no longer compensate for these
nonlinear effects.

VIII. 3. Connection to Quantum-Classical
Correspondence

While our analysis is classical, it provides insights into
the behavior of quantum Kerr systems in the semiclassi-
cal regime, where photon numbers are large. Recent stud-
ies have established connections between classical Lyapunov
exponents and quantum chaos indicators, such as out-of-
time-ordered correlators (OTOCs) [63].

The stable attractors identified in our system correspond
to coherent states in the quantum description, whereas the
chaotic regions relate to situations where quantum states
exhibit rapid entanglement growth and delocalization. This
quantum-classical correspondence is particularly relevant
for superconducting circuit implementations, which often
operate in a mesoscopic regime where both classical and
quantum effects are important.

VIII. 4. Limitations and Future Work
Several limitations of our current model should be ac-

knowledged:
1. Classical approximation: Our analysis is entirely

classical, neglecting quantum effects that may become
significant at low field intensities or in specialized
configurations designed to enhance quantum correla-
tions.

2. Simplified coupling: The coupling terms in our
model represent instantaneous interactions, omitting
potential time delays and frequency-dependent effects
that may occur in real optical systems.

3. Parameter restrictions: We have focused on sym-
metric configurations with identical oscillator parame-
ters ϵj in order to isolate the effects of coupling topolo-
gies. However, allowing for asymmetric parameters
could reveal additional, potentially richer dynamical
behavior.

Future work may address these limitations by:
• Extending the model to include quantum effects, po-

tentially revealing connections to quantum chaos.
• Investigating asymmetric configurations with varied

oscillator parameters.
• Exploring the effects of time-delayed coupling, which

may introduce additional complexity and could be rel-
evant for applications such as reservoir computing.

• Developing control strategies to stabilize desired at-
tractors or enable switching between attractors for use
in optical routing applications.

IX. Conclusions

This paper has presented a comprehensive stability anal-
ysis of three coupled Kerr oscillators in both triangular and
sandwich configurations, providing new insights into the dy-
namics of coupled nonlinear optical systems with significant
implications in quantum computing. Using numerical simu-
lations and Lyapunov exponent analysis, we have character-
ized the system’s behavior across various parameter regimes,
with particular focus on transitions from regular to chaotic
dynamics.

Our key findings can be summarized as follows:
1. Multiple stable attractors: The subsystem consist-

ing of the first oscillator exhibits three distinct circu-
lar attractors in phase space, each with a different ra-
dius and dependent on initial conditions. The complex
basin structure of these attractors reveals the intricate
nature of the underlying dynamics. In quantum com-
puting implementations, these distinct states can serve
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as computational basis states for information encod-
ing.

2. Configuration-dependent properties: The coupling
configuration (triangular vs. sandwich) significantly
affects the attractor properties and system frequencies.
Counterintuitively, the sandwich configurations, de-
spite having fewer direct couplings, leads to larger sec-
ondary and tertiary attractors compared to the fully-
coupled triangular arrangement. This finding has im-
portant implications for quantum hardware design, in-
dicating that modifying coupling configurations can
substantially enhance computational performance.

3. Damping-controlled transition to chaos: Lyapunov
exponent analysis reveals a transition from stable to
chaotic dynamics as damping decreases. We iden-
tify critical damping thresholds below which chaos
emerges, with the undamped system (γ = 0) ex-
hibiting fully developed chaos, as indicated by posi-
tive Lyapunov exponents. Understanding these stabil-
ity characteristics is essential both for designing quan-
tum operations with predictable performance and for
applications that intentionally leverage chaos for com-
putational advantage.

4. Frequency-dependent stability windows: Even in
chaotic regimes, certain pumping frequencies support
islands of stability, suggesting the possibility of con-
trolling the system’s behavior through careful parame-
ter selection. This frequency dependence could be ex-
ploited for frequency-selective quantum operations or
for implementing multi-frequency encoding schemes.

5. Chaotic beats: The system under consideration can
generate characteristic signals known as chaotic beats.
Unexpectedly, these were found in the regime of
strong coupling of the three Kerr oscillators – whereas
this phenomenon is typically associated with weakly
coupled systems. The multitude of parameters and
the resulting richness of dynamical behaviors suggest
that this specific type of system dynamics can emerge
across a wide range of coupler parameter configura-
tions.

The significance of these results extends beyond the spe-
cific system studied here. The mechanisms of transition to
chaos that we have identified – involving the competition
between nonlinear coupling and dissipation – are likely ap-
plicable to a wide range of coupled nonlinear oscillator sys-
tems. Our findings on the impact of coupling topology on
stability may inform the design of nonlinear optical devices
where controlled chaos or switching between multiple stable
states is desired.

In the context of quantum computing, our work con-
tributes to the understanding of Kerr parametric oscillator
systems, which are increasingly employed as fundamen-
tal building blocks in quantum processors. The stability
analysis we have presented provides insights into param-
eter regimes suitable for implementing high-fidelity quan-
tum gates, error-resilient encoding schemes, and specialized
computing paradigms such as quantum neural networks.

Potential applications of these results include optical
switches based on controlled transitions between attractors,

secure communication systems leveraging chaotic dynam-
ics, random number generation using the unpredictable na-
ture of the chaotic regime, multi-state optical memory el-
ements utilizing the system’s multiple attractors, quantum
gate implementations in superconducting circuit platforms,
and error correction schemes exploiting the enhanced stabil-
ity of specific parameter regimes.

Future research will focus on extending this analysis
to asymmetric configurations, including time-delayed cou-
pling effects, and developing experimental implementations
to verify our theoretical predictions. Furthermore, investigat-
ing the quantum analogs of the classical dynamics explored
in this study may reveal new phenomena at the quantum-
classical boundary, particularly in the context of quantum
chaos and its applications in quantum information process-
ing.

Acknowledgment

The authors would like to express their gratitude to Prof.
Adam Miranowicz for his valuable comments and careful
reading of the final version of the manuscript. K.B. was sup-
ported by the Polish National Science Centre (NCN) under
the Maestro Grant No. DEC-2019/34/A/ST2/00081.

References
[1] R.W. Boyd, Nonlinear Optics, Academic Press, Amsterdam

(2008).
[2] Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to

Photonic Crystals, Academic Press, San Diego (2003).
[3] M.O. Scully, M.S. Zubairy, Quantum Optics, Cambridge

University Press, Cambridge, UK (1997).
[4] C. Gerry, P. Knight, Introductory Quantum Optics, Cam-

bridge University Press, Cambridge (2006).
[5] D.F. Walls, G.J. Milburn, Quantum Optics, Springer, Berlin

(2006).
[6] X. Gu, A.F. Kockum, A. Miranowicz, Y. Liu, F. Nori, Mi-

crowave photonics with superconducting quantum circuits,
Phys. Rep. 718–719, 1–102 (2017).

[7] C. Cui, L. Zhang, L. Fan, In situ control of effective Kerr
nonlinearity with Pockels integrated photonics, Nat. Phys. 18,
497–501 (2022).

[8] M. Perez, G. Moille, X. Lu, J. Stone, F. Zhou, K. Srini-
vasan, High-performance Kerr microresonator optical para-
metric oscillation on a silicon chip, Nature Commun. 14, 242
(2023).

[9] Y. Yin, H. Wang, M. Mariantoni, R.C. Bialczak, R. Barends,
Y. Chen, M. Lenander, E. Lucero, M. Neely et al., Dy-
namic quantum Kerr effect in circuit quantum electrodynam-
ics, Phys. Rev. A 85, 023826 (2021).

[10] IBM, IBM Debuts Next-Generation Quantum Processor
& IBM Quantum System Two, IBM Newsroom (2023).

[11] T. Kanao, S. Masuda, S. Kawabata, H. Goto, Quantum Gate
for a Kerr Nonlinear Parametric Oscillator Using Effective
Excited States, Phys. Rev. Applied 18, 014019 (2022).

[12] G. Margiani, O. Ameye, O. Zilberberg, A. Eichler, Three
strongly coupled Kerr parametric oscillators forming a Boltz-
mann machine, arXiv:2504.04254 (2025).
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[24] R. Tanaś, A. Miranowicz, Ts. Gantsog, Quantum phase prop-
erties of nonlinear optical phenomena, [In:] Progress in Op-
tics 35, Eds. E. Wolf, Elsevier, Amsterdam (1996), 355–446.
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