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Abstract

In the first part we review some formulae for the Euler–Mascheroni constant γ. For the
four formulae we present comparison of the computer determinations of these expressions with
the actual value of γ. Next we give new formulae expressing the γ constant in terms of the
Ramanujan–Soldner constant µ. Employing the cosine integral we obtain another infinity of
formulae for γ. Finally we express γ in terms of π.

1 Introduction
The Euler–Mascheroni constant is defined by the following limit:

γ = lim
k→∞

(
k∑

n=1

1

n
− log(k)

)
= 0.57721566490153286 . . . . (1)

see e.g. [19], [21]. It is not known whether γ is irrational, see [31], [21]. It is known that if γ is
rational and equal to a simple fraction p/q than q > 10242080, see [19, p.97].

The Euler–Mascheroni constant γ is a first element of the sequence of the Stieltjes constants
γn defined by

γn = lim
m→∞

[(
m∑

k=1

(log k)n

k

)
− (logm)n+1

n+ 1

]
. (2)

When n = 0 (what corresponds to Euler–Mascheroni constant γ = γ0) the numerator of the
fraction in the first summand in (2) is formally 00 which is taken to be 1. These constants are
coefficients of the Laurent series for the Riemann’s ζ(s) function:

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)
n

n!
γn (s− 1)

n (3)

The limit in (1) is very slowly convergent (like n−1) and in [14] it was shown that slight
modification of (1):

γ = lim
k→∞

(
k∑

n=1

1

n
− log(k +

1

2
)

)
improves convergence to 1/n2. Presently sequences converging to γ much faster are known, see [23]
where sequence which converge to γ like n−6 is presented. There are numerous formulae expressing
γ as limits, series, integrals or products, see [19] and e.g. [17], [10], [21]. We highlight here the
infinity of formulae for γ [17, p.4]:

γ =

n∑
k=1

1

k
− log(n)−

∞∑
k=2

ζ(k, n+ 1)

k
, n = 2, 3, . . . , (4)
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where the Hurwitz zeta function:

ζ(s, k) =

∞∑
n=0

1

(n+ k)s
, ℜ(s) > 1 k ̸= −1,−2,−3 . . . . (5)

A second infinite set of formulaae for γ is found in [7, eq.(9.3.10)]:

γ =

n∑
k=1

1

k
− log n−

∫ ∞

n

{x}
x2

dx, n = 1, 2, 3, . . . . (6)

where {x} is the fractional part of x.
The third example includes uncountable many formulae for γ, see e.g. [8]: for real r > 0

γ = lim
n→∞

∑∞
k=0{(

nk

k! )
r(
∑k

j=1
1
j − log(k))}∑∞

k=0(
nk

k! )
r

. (7)

That this formula gives γ for each r > 0 means that the derivative of rhs with respect to r is zero.
There are also doubly uncountable formulaae for γ. As the fourth example, we present the formula
(3.13) from [10]:

γ = r

∫ ∞

0

(
1

1 + xq
− exp(−xr)

)
dx

x
, q > 0, r > 0. (8)

The numerical value of the Euler–Mascheroni constant has been calculated many times to ever in-
creasing decimal places, see e.g. [8]. The current world record (as of 14 June 2023) is 700, 000, 000, 000
decimal digits of γ and belongs to Jordan Ranous and Kevin O’Brien , see [1].

The Euler–Mascheroni constant appears in numerous places in number theory including the
theory of the Riemann zeta function, such as in the Nicolas’ and Robin’s criterions for the Riemann
Hypothesis, see e.g. [9, vol.1, chapters 5 and 7]. One of the most amazing appearances of the γ
constant is in F. Mertens’s two products over primes [18, p.351], one of which involves constants
π, e, γ (“holy trinity”):

lim
n→∞

1

log(n)

∏
p<n

(
1 +

1

p

)
=

6eγ

π2
(9)

from which we obtain
γ = log

(π2

6
lim
n→∞

1

log(n)

∏
p<n

(
1 +

1

p

))
. (10)

With today’s computers we can check the accuracy of the above relation. In the Table 1 we present
numerical test of (9) along with the values of the γ(n) computed from finite products over primes:

γ(n) = log
(π2

6

1

log(n)

∏
p<n

(
1 +

1

p

))
. (11)

We present these numerical calculations as an illustration of (9) not the way to compute γ, as
there are more efficient algorithms known, see e.g. [8].

Another appearance of γ is found in the formula for the average value of the divisor function
d(n), which counts the number of divisors of n including 1 and n, is given by the theorem proved
by Dirichlet, see e.g. [18, Th.320]:

1

n

n∑
k=1

d(k) = log n+ 2γ − 1 +O
( 1√

n

)
. (12)

Values of γ obtained from the formula above for n = 215, . . . , 223 are presented in Table 2.
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TABLE 1 The values of the product in (9) up to n = 1000, 10000, . . . , 1013 (second column) and
values following from the Mertens’s formula (third column), their ratio in fourth column and
finite approximations to γ in the last column. The fluctuations in the last digits of the values

obtained from the computer are possibly caused by fluctuations in the prime distrubution or by
cumulation of floating–point errors.

n
∏

p<n(1 + 1/pn) 6eγ log(n)/π2 ratio γ(n)

103 7.5094464 7.4891425 1.0027111 0.57992110
104 9.9849904 9.9733461 1.0011675 0.57838053
105 12.4756558 12.4721158 1.0002838 0.57749746
106 14.9651229 14.9643917 1.0000489 0.57726252
107 17.4570890 17.4568441 1.0000140 0.57722769
108 19.9494269 19.9493052 1.0000061 0.57721977
109 22.4418428 22.4417674 1.0000034 0.57721703
1010 24.9342956 24.9342295 1.0000027 0.57721631
1011 27.4267504 27.4266917 1.0000021 0.57721581
1012 29.9192150 29.9191539 1.0000020 0.57721571
1013 32.4116846 32.4116161 1.0000021 0.57721578

The relation (12) suggests that there is a connection between γ and the distribution of primes.
Further example of this relation we found in [11, Corrolary 1]:

γ =
1

2

∞∑
n=1

(
1− Λ(n)

n

)
, (13)

where the von Mangoldt functionΛ(n) is defined as

Λ(n) =

{
log p if n = pk for some prime p and integer k ≥ 1,

0 otherwise.
(14)

TABLE 2 The values of γ obtained from (12) for n = 220, 222, . . . , 232.

n
∑n

k=1 d(k) γ from (12)
220 = 1048576 14698342 0.57724382397818362
222 = 4194304 64607782 0.57722880551235453
224 = 16777216 281689074 0.57722242972001786
226 = 67108864 1219788256 0.57721736522986625
228 = 268435456 5251282902 0.57721609681052878
230 = 1073741824 22493653324 0.57721585470866853
232 = 4294967296 95928700948 0.57721570434208188

The rhs of (13) is a sum of two diverging series: just harmonic series and decimated harmonic
series where instead of ones in the nominator are values of Λ(n) > 1, see Table 3.

TABLE 3 The values of γ obtained from (13) for n = 10, . . . , 197 compared with the actual value
of the Euler–Mascheroni constant.

n eq. (13) ratio
10000 0.576533359060 1.001183462901
100000 0.576946987410 1.000465688352
1000000 0.577417595935 0.999650285972
10000000 0.577287376546 0.999875778257
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A surprising appearance of γ is in the “harmonic” sum of reciprocals of non–trivial zeros ρ of
the Riemann’s zeta function [15, p.67 and p. 159], [13, pp.80–82]:∑

ρ

1

ρ
= 1 +

1

2
γ − 1

2
log(4π) = 0.023095708966 . . . . (15)

Above again three constants π, e, γ appear: e is hidden in the natural logarithm. The sum (15)
is real and convergent when zeros ρ and complex conjugate ρ are paired together and summed
according to increasing absolute values of the imaginary parts of ρ. Several years ago using the
L-function calculator written by Michael Rubinstein (see [27]) we calculated 100,000,000 imaginary
parts of zeros of ζ(s); the last obtained zero has the value ρ100000000 = 1

2 + ı42653549.7609515. In
Table 4 we present approximations to γ obtained from (15) after summing over 1000, 10,000, ...,
100,000,000 zeros of zeta function.

Another connection with the Riemann’s zeta function ζ(s) is given by the astonishing fact: the
Riemann’s Hypothesis is true iff the following relation holds, see [30]:

1

π

∫ ∞

0

2t arg(ζ(1/2 + it))

(1/4 + t2)2
dt = γ − 3 (16)

The largest known prime numbers are of the form 2p − 1 where p is also a prime and are
called Mersenne primes, see eg. https://www.mersenne.org/. In [25, p.101], [33, p.388] (see also
[29, §3.5]) the Lenstra–Pomerance–Wagstaff conjecture was formulated: if Mn denotes the n-th
Mersenne prime, then Mn grows doubly exponentially with n:

log2 log2 Mn ∼ ne−γ , (17)
The presence of γ here comes from Mertens’s result (9). In Fig. 1 we compare the Lenstra–
Pomerance – Wagstaff conjecture with all 51 presently known Mersenne primes [2]. The fit by
least square method gives the line with the slope 0.54 what leads to rather poor value 0.61 for γ.

Fast converging to γ formulae were presented in [8]; they are the most commonly utilized
formulae for numerical calculations of gamma to high precison.

In this paper we present some new formulae for γ obtained by using special values for the
argument of the logarithmic and cosine integrals. Similar idea appeared in [32], where the series
for the exponential integral was used to calculate γ up to 3566 decimal places. A few of these new
expressions present the Euler–Mascheroni constant in the form of the difference of two numbers,
one of which is transcendental. It gives hopes for the proof of the irrationality and perhaps the
transcendentality of γ.

The astonishing formula was found by A. Kawalec [20]. He expressed γ in terms of the imaginary
parts tl of the nontrivial zeros of the Riemann’s zeta function on the critical line ζ( 12 + itn) = 0:

γ = lim
k→∞

(
2

k∑
n=1

k∑
m=n+1

(−1)m(−1)n+1

√
mn

cos(tl log(m/n))− log(k)

)
m = 1, 2, 3, . . . . (18)

It is infinitude of formulae as there are infinitely many nontrivial zeta zeros. The above formula
does not depend on the Riemann’s Hypothesis: if there are any zeros off critical line they do not
enter (18).

2 Logarithmic integral
The logarithmic integral is defined for all positive real numbers x ̸= 1 by the definite integral

li(x) ≡


p.v.

∫ x

0

du

log(u)
, for x > 1;∫ x

0

du

log(u)
, for 0 < x < 1,

(19)
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Fig.1 The plot illustrating the Lenstra–Pomerance–Wagstaff conjecture. The least–square fit was done to
all known Mn and it is 0.54n+ 1.31, which gives rather bad value for γ of 0.61.

where p.v. stands for Cauchy principal value around u = 1:

p.v.

∫ x

0

du

log(u)
= lim

ϵ→0

(∫ 1−ϵ

0

du

log(u)
+

∫ x

1+ϵ

du

log(u)

)
. (20)

There is a series giving logarithmic integral li(x) for all x > 1 (see [3, formulae 5.1.3 and 5.1.10])

li(x) = γ + log log x+

∞∑
n=1

logn

n!
for x > 1. (21)

This series is quickly convergent because it has nn! in denominator which eventually overwhelms
the logn(x) term in the numerator. The above expansion was known to C.F. Gauss and F.W.
Bessel, see remarks by R. Dedekind after the famous paper “Über die Anzahl der Primzahlen
unter einer gegebenen Grösse” by B. Riemann in [26, p. 168].

TABLE 4 The value of γ obtained from (15) after summing over n = 1000, 10000, . . . , 100000000
zeros of ζ(s).

n γ
1000 0.5757765
10000 0.5769463
100000 0.5771715
1000000 0.5772091
10000000 0.5772147
100000000 0.5772155
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After a change of variables, a variant of the above series is given by:∫ ∞

x

e−t

t
dt = −γ − log x+

∞∑
n=1

(−1)n−1xn

n · n!
. (22)

This was used in [32] for large x > 0, when the lhs of above equation is practically zero (in fact it
is O(e−x/x)), to compute 3566 digits of γ, see also [8].

The logarithmic integral takes a value 0 at only one real number which is denoted by µ and is
called the Ramanujan–Soldner constant ∫ µ

0

du

log u
= 0, (23)

see e.g. [6, entry 14, p.126, eq.(11.3)] and its numerical value is:

µ = 1.45136923488338105028396848589202745 . . . .

Thus for x > µ we have:
li(x) =

∫ x

µ

du

log(u)
. (24)

Inserting in (21) x = µ > 1 we obtain the first formula expressing the Euler–Mascheroni constant
via the Ramanujan–Soldner constant:

γ = − log log µ−
∞∑

n=1

lognµ

n · n!
. (25)

Appearing here constant log µ = 0.37250741078136663446 . . . is the zero of the exponential integral
Ei(x), see (45). The series in (25) is very quickly convergent. Using PARI [24] we checked that
summing in (25) to only n = 20 reproduces 31 digits of γ. In the Appendix we give the script to
check (25) to any desired number of digits. In constrast, calculating (1) at k = 1000000 gives only
5 digits of γ.

Even faster converging series was discovered by Ramanujan [6, p.130]:

∫ x

µ

du

log u
= γ + log log x+

√
x

∞∑
n=1

(−1)n−1(log x)n

n! 2n−1

⌊(n−1)/2⌋∑
k=0

1

2k + 1
for x > 1. (26)

Putting here x = µ we obtain second formula for the Euler—Mascheroni constant:

γ = − log log µ+
√
µ

∞∑
n=1

(−1)n(log µ)n

n! 2n−1

⌊(n−1)/2⌋∑
k=0

1

2k + 1
. (27)

We checked using PARI that summing above to n = 20 reproduces correctly 37 digits of γ.
Using x = e in (21) greatly simplifies the series leading to the third expression for the Euler—

Mascheroni constant:
γ =

∫ e

µ

du

log u
−

∞∑
n=1

1

n · n!
:= α− β, (28)

where the numbers
α :=

∫ e

µ

du

log u
= 1.89511781635593675546652 . . . , (29)

β :=

∞∑
n=1

1

n · n!
= 1.31790215145440389486 . . . . (30)
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The number β is irrational by the same reasoning which proves the irrationality of e =
∑∞

n=0 1/n!
(see e.g. [28, p.65]) which can be repeated here mutatis mutandis. In fact from the Siegel–
Shidlovsky theorem [16, see eq.5.2 for k = 1] it follows that β (30) is transcendental.

Putting x = e in (26) yields the fourth expression for the Euler–Mascheroni constant

γ =

∫ e

µ

du

log u
+

√
e

∞∑
n=1

(−1)n

n! 2n−1

⌊(n−1)/2⌋∑
k=0

1

2k + 1
. (31)

Finally, let us notice that in [19] at several places (e.g. pp. 52, 104), we find that Euler had
hoped that γ is the logarithm of some important number. Above we have given two series for γ in
terms of the logarithm of the Ramanujan–Soldner constant µ.

3 Cosine integral
Many special functions involve in theirs expansions the Euler-Mascheroni constant. The cosine
integral Ci(x) function for x > 0 has a series expansion also containing γ (see e.g. [3, §5.2, formula
5.2.16]):

Ci(x) = −
∫ ∞

x

cosu

u
du = γ + log x+

∞∑
n=1

(−x2)n

2n(2n)!
(32)

= γ + log x+

∞∑
n=1

(−x2)n

2n+1nn!(2n− 1)!!
,

because (2n)! = 2nn!(2n− 1)!!, where odd factorial (2n− 1)!! = 1 · 3 · 5 · . . . · (2n− 1). Using x = 1
we obtain the fifth expression for the Euler—Mascheroni constant:

γ = −
∫ ∞

1

cosu

u
du+

∞∑
n=1

(−1)n−1

2n(2n)!
, (33)

where: ∫ ∞

1

cosu

u
du = −0.3374039229009681346626 . . . (34)

and
∞∑

n=1

(−1)n−1

2n(2n)!
= 0.2398117420005647259439 . . . . (35)

Again, γ can be expressed simply in terms of two other numbers. The cosine integral Ci(x) has
infinitely many zeros that do not have their own names and are non–periodic. They are usually de-
noted by ck, see [22, eq.(9)]. The first zeros are c0 = 0.61650548562 . . . , c1 = 3.38418042255 . . . , c2 =
6.42704774405 . . . , . . .. In [22], A.J. MacLeod gives the asymptotic expansion for these zeros:

ck ≈ kπ +
1

kπ
− 16

3(kπ)3
+

1673

15(kπ)5
− 507746

105(kπ)7
+

111566353

315(kπ)9
. . . . (36)

Putting any specific zero ck into (32) we obtain an infinity of expressions for γ

γ = −
∞∑

n=1

(−c2k)
n

2n(2n)!
− log ck, k = 0, 1, 2, . . . . (37)

In Table 5 we present values for γ obtained from this formula when ck are calculated from (36).
In the last column the differences between values in third column and γ are given.

7



Fig.2 The double–logarithmic plot of lhs of equation (41) for
k = 1000, 2000, . . . , 8000, 16000, 32000, 64000.

From the MacLeod formula (36) we see that large zeros of Ci(x) approach just zeros of sin(x) =∫
cos(x)dx: ck ∼ kπ for large k. Thus we have our sixth formula for the Euler—Mascheroni

constant:
γ = lim

k→∞

( ∞∑
n=1

(−1)n−1(kπ)2n

2n(2n)!
− log(kπ)

)
. (38)

Denoting x = kπ the above formula can be written also as

γ = lim
x→∞

( ∞∑
n=1

(−1)n−1x2n

2n(2n)!
− log(x)

)
. (39)

In [5, p.98] we found similar formula obtained by S. Ramanujan:

γ = lim
x→∞

( ∞∑
n=1

(−1)n−1xn

n!n
− log(x)

)
. (40)

It seems to be a subtle problem to reconcile equations (39) and (40). The formula (39) in some
sense resembles the original definition (1). Using Pari we calculated the expression in the big
parentheses in (38) for k = 1000, 2000, 4000, 8000, . . . , 64000. E.g. for k = 64000 the expression in
big parentheses on rhs of (38) gives 0.577215664926 . . ., i.e. it reproduces correctly first 10 digits of
γ. Differences between γ and values obtained from (38) for mentioned above set of k were perfectly
arranged on the straight line on the double logarithmic plot, see Fig.2. Fitting by least–square
method gave equation of the line 0.101321k−1.9999, thus it suggests:∣∣∣∣∣γ + log(kπ)−

∞∑
n=1

(−1)n−1(kπ)2n

2n(2n)!

∣∣∣∣∣ = 0.1013211

k2
. (41)
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In [3] we found asymptotic expansion of Ci(x), see formulae (5.2.9), (5.2.35) and (5.2.34):

Ci ∼ 1

x

(
1− 2!

x2
+

4!

x4
− 6!

x6
+ . . .

)
sin(x) +

1

x2

(
1− 3!

x2
+

5!

x4
− 7!

x6
+ . . .

)
cos(x) (42)

Putting above x = kπ we obtain:∣∣∣∣∣γ −
(
− log(kπ)−

∞∑
n=1

(−1)n(kπ)2n

2n(2n)!

)∣∣∣∣∣ ∼ 1

π2k2
(43)

and 1/π2 = 0.1013211836 . . . what agrees with constant on rhs of (41).

Concluding remarks: We think that the existence of countable many formulae for a given
constant is necessary condition for its irrationality while the existence of uncountable many for-
mulae is necessary condition for transcendentality. For example, there is an expression for the π
depending on arbitrary complex number z (see [4, not labelled formuls on top of p.15]) Erdős:

π =

∞∑
k=0

(
z − 4

4k + 3
+

z + 4

4k + 1
+

z

4k + 4
− 3z

4k + 2

)
(44)

The fact, that for each z ∈ C the value of rhs is constant means that the derivative of rhs with
respect to z is zero. In fact there should be Cauchy–Riemann’s equations satisfied.

The existence of infinitely many expressions for a given number r ∈ R is not sufficient for
irrationality. As a counter–example we have following infinite sequence of telescoping series

1 =

∞∑
n=1

(n+ 1)k − nk

nk(n+ 1)k
, k = 1, 2, 3, . . . .

Here is less trivial example:

1

2
= sin(

π

6
+ 2kπ) =

∞∑
n=0

(−1)n(π/6 + 2kπ)2n+1

(2n+ 1)!
, k = 0,±1,±2, . . . .

As for γ there exist uncountable many expressions like in (7) it is a strong argument tht γ is not
only irrational but even transendental.

Appendix: Below is a simple PARI/GP script checking eq. (25) to arbitrary accuracy declared
by \p precision. In the example below it is set to 2222. The output gives agreement between the
lhs and rhs of (25) up to the number of digits given by precision. It takes a fraction of a second to
get results.

allocatemem()

\p 2222

Soldner=solve(x=1.4, 1.5, real(eint1(-log(x))));
tmp=log(Soldner);
ss=suminf(n=1, tmp^n/(n*n!));
write("EMRS.txt", Euler+log(tmp)+ss);
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TABLE 5 The values of expression (37) when for ck the series (36) are substituted for
k = 10, 20, . . . , 100.

k ck from eq.(36) eq.(37) for this ck |eq.(37) for this ck − γ|
10 31.447589011629313 0.5772156649004098 1.123× 10−12

20 62.847747177749027 0.5772156649015328 1.953× 10−17

30 94.258383581485718 0.5772156649015328 2.888× 10−20

40 125.67166120666795 0.5772156649015328 2.657× 10−22

50 157.08599750231211 0.5772156649015328 6.519× 10−24

60 188.50086358429127 0.5772156649015328 2.871× 10−25

70 219.91603253410894 0.5772156649015328 1.771× 10−26

80 251.33139082491842 0.5772156649015328 1.180× 10−27

90 282.74687536370536 0.5772156649015328 2.181× 10−29

100 314.16244828586940 0.5772156649015328 2.861× 10−29

In the above script we used the fact that logarithmic integral is related to the exponential
integral Ei(x), see e.g. [3, formula (5.1.3)]:

li(x) = Ei(log x), x > 1, (45)

where

Ei(x) =≡


−p.v.

∫ ∞

−x

e−t

t
dt, for x > 0.

−
∫ ∞

−x

e−t

t
dt, for x < 0

(46)

and the principal value is needed to avoid a singularity of the integrand at t = 0. The logarithmic
integral is not implemented in Pari while exponential integral is implemented as eint1(x). We
obtained as a result of running the above script the number 4.27× 10−2235. To check (27) change
last lines to

ss=suminf(n=1, (-1)^n*tmp^n/(2^(n-1.0)*n!)*
sum(k=0, floor((n-1)*0.5), 1.0/(2.0*k+1.0)));

write("EMRS.txt", Euler+log(tmp)-sqrt(Soldner)*ss);

The output we obtained this time was 2.7328× 10−2233.

The equation (33) can be checked in Pari using the following commands:

allocatemem()
\p 2222

tmp=sumalt(n=1, (-1)^(n-1)/(2*n*(2*n)!));
c_i=intnum(u=1, [oo, I], cos(u)/u);
print(Euler+c_i-tmp);

We give further explanations: PARI contains the numerical routine sumalt for summing infinite
alternating series in which extremely efficient algorithm of Cohen, Villegas and Zagier [12] is
implemented; oo denotes in Pari infinity +∞; intnum(·) is the function for numerical integration
and flag k*I (I= ı, i.e. ı2 = −1) tells the procedure that the integrand is an oscillating function
of the type cos(kx), here k = 1. After a few minutes we obtained 1.42335 × 10−2235. This result
shows the power of Pari’s procedures: the value of the cosine integral at 1 is indeed calculated
numerically without using the expansion (32) and the value of γ so the vicious circle (tautology)
is avoided.
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