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3n + 3k Problem
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Abstract: The Collatz problem is generalized to the 3n + 3k case. It is shown that as long as the Collatz function iterates
converge to the cycle passing through the number 1, the 3n + 3k sequence converges to the cycle passing through the
number 3k for arbitrary positive integers n and k. The proof demonstrates that the sequence of 3n + 3k function iterates
for a number 3kn corresponds exactly to the sequence of Collatz iterates for n multiplied by 3k.
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The Collatz problem [3, 4] is a number theory problem
that provides an algorithm for generating a sequence. The al-
gorithm is as follows. Start with an arbitrary positive integer
n. If n is even, divide it by two; if n is odd, multiply it by
three and add one. The conjecture states that the sequence
will always reach the number 1.

More formally, the Collatz conjecture asserts that a se-
quence defined by repeatedly applying the function

T0(n) =

{
(3n+ 1)/2, for odd n,
n/2, for even n,

(1)

always converges to the cycle passing through the number
1 for arbitrary positive integer n.

Theorem 1. As long as the T0 iterates converge to 1, the
sequence defined by repeatedly applying the function

Tk(n) =

{
(3n+ 3k)/2, for odd n,
n/2, for even n,

(2)

converges to the cycle passing through the number 3k for any
arbitrary positive integers n and k.

Note that the 3n + 3k problem was recently discussed
in [1].

Proof: The function Tk(n) can be adjusted for multiples of
three using

3 · Tk(n) =

{
(3 · 3n+ 3k · 3)/2, for odd n,
3n/2, for even n.

(3)

Now, substitute 3n for m (so that m is a multiple of 3). Then
3 · Tk(n) = Tk+1(3n), and therefore

Tk+1(m) =

{
(3m+ 3k+1)/2, for odd m,
m/2, for even m.

(4)

Note that 3n is odd when n is odd, and 3n is even when n is
even. It means that the sequence of Tk+1 iterates for m = 3n
corresponds exactly to the sequence of Tk iterates for n mul-
tiplied by 3.

Now we know the behavior of the trajectory of Tk+1

when m is a multiple of 3. It remains to determine what
happens to this trajectory when m is not a multiple of 3.
If such a number is even, then we can repeatedly pull out all
the factors of 2 (the even branch of Tk+1) until we reach an
odd number. Therefore, we focus on odd m. A single iterate
of the Tk+1 function yields (3m + 3)/2 (the odd branch of
Tk+1), where (3m + 3)/2 is a multiple of 3 (3m + 3 is ob-
viously a multiple of 3, the division by 2 has no effect on di-
visibility by 3). Note that the iterates of Tk+1 converge to the
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cycle passing through the number 3k+1, which corresponds
to T0(n) = 1.

Corollary 1.1. Tk iterates always lead to the cycle 1 · 3k →
2 · 3k → 1 · 3k, assuming the Collatz conjecture holds.

The iterates of T0 lead to the cycle 1 → 2 → 1, where as
the iterates of T1 go to 3 → 6 → 3, etc.

Corollary 1.2. The sequence of Tk iterates for a number
3kn corresponds exactly to the sequence of T0 iterates for n
multiplied by 3k.

In short, Tk(3
kn) = 3kT0(n). See an example for T0,

T1, and T2 in Tab. 1.
Now, consider T1 starting with an odd number n. The

first T1 takes us to (3n + 3)/2, which is a number of the
form 3m/2. Meanwhile, consider the even number n + 1
and subject it to iteration T0. The result is (n + 1)/2 (since
the n + 1 is even), which is the number of the form m/2.
We can see that subsequent T1 iterates correspond exactly to
the T0 iterates multiplied by 3. Thus, there is a relationship
between the initial number n for T1 and the number n + 1
for T0. An example for the numbers 63 and 64 is given in
Tab. 2.

In [2], Lagarias extends T0(n) to the rational numbers
with odd denominators, and shows that any rational element
q of a cycle of T0(n) must be of the form

q =

∑l−1
i=0 3

i2ai

2m − 3l
, (5)

for some l ≥ 0, m > l and m > a0 > a1 > . . . > al−1 ≥ 0.

Lemma 1.1. The map T0(n) has no non-zero rational cycle
elements with a denominator which is a multiple of 3.

Proof: Suppose that l = 0. Then 2m − 30 = 2m − 1 can be
a multiple of 3 (for instance, for m = 4). However, in this
case the sum in the numerator is 0, because we sum from
i = 0 to −1, which is an empty sum; therefore, q = 0.

Now suppose that l > 0. Then the numerator is 2m−3l ≡
≡ 2m (mod 3), and 2m is never a multiple of 3, by the
unique prime factorization of integers.

Another way of looking at Tk(n) is by introducing the
function L3k(n) = n/3k. Notice that L3k(n) is a bi-
jection on the rational numbers with the inverse function
L3k

−1(n) = 3kn.
We have

Tk(n) = L3k
−1 ◦ T0 ◦ L3k(n). (6)

We now show this:

Tk(n) =

{
(3n+ 3k)/2, for odd n,
n/2, for even n

=

=

{
3k(3(n/3k) + 1)/2, for odd n,
3k(n/3k)/2, for even n

=

= L3k
−1 ◦ T0 ◦ L3k(n).

(7)

Considering our equation in (7), we obtain the following
commutative diagram

n/3k
T0 // T0(n/3

k)

L
3k

−1

��
n

Tk

//

L
3k

OO

Tk(n)

Using the notation Q[(2)] for all rational numbers with an
odd denominator, iterating the above diagram yields the fol-
lowing diagram

Q[(2)]
T0 // Q[(2)]

L
3k

−1

��

id // Q[(2)]
T0 // Q[(2)]

L
3k

−1

��
Q[(2)]

L
3k

OO

Tk

// Q[(2)]

L
3k

::

Tk

// Q[(2)]

giving us

Tk(Tk(n)) = L3k
−1(T0(T0(L3k(n)))), (8)

and we may continue this process, since L3k and L3k
−1 can-

cel each other out. We will use this fact extensively in the
proof of the next corollary.

Corollary 1.3. Tk(n) has exactly the same integer cycles as
T0(n), except that they are scaled by 3k.

Proof: Let q be an element of an integral cycle of Tk(n) of
length l. Then

q = Tk
(l)(q) =

= L3k
−1 ◦ T0 ◦ L3k ◦ L3k−1 ◦ T0 ◦ L3k◦

◦ . . . ◦ L3k
−1 ◦ T0 ◦ L3k(q)︸ ︷︷ ︸

l

=

= L3k
−1 ◦ T0 ◦ . . . ◦ T0︸ ︷︷ ︸

l

◦L3k(q) =

= L3k
−1 ◦ T0

(l) ◦ L3k(q),

(9)

where L3k
−1 ◦ T0 ◦ L3k is composed exactly l times on the

second and third lines. Applying L3k from the left to the first
part of the equation above and the last part of the equation
yields:

q/3k = T0
(l)(q/3k), (10)

so q/3k is a rational cycle element of T0. However, by the
preceding result, there are no rational cycle elements whose
denominator is a multiple of 3. Therefore, 3k|q and hence
q = 3kq′. It follows that q′ is a fixed point of T0

(l) since

q/3k = T0
(l)(q/3k),

3kq′/3k = T0
(l)(3kq′/3k),

q′ = T0
(l)(q′).

(11)
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Tab. 1. T0, T1 and T2 function iterates

Function
Iteration

0 1 2 3 4 5 6

T2 189 288 144 72 36 18 9

T1 63 96 48 24 12 6 3

T0 21 32 16 8 4 2 1

Tab. 2. T0 and T1 function iterates for starting values n+ 1 and n

Function
Iteration

0 1 2 3 4 5 6

T1 63 96 48 24 12 6 3

T0 64 32 16 8 4 2 1

Hence, any integral cycle element of Tk is a integral cycle
element of T0 multiplied by 3k.

Now, suppose that q is an integral cycle element of T0.
We claim that Tk

(l)(3kq) = 3kq. As shown above,

Tk
(l)(n) = L3k

−1 ◦ T0
(l) ◦ L3k(n), (12)

hence

Tk
(l)(3kq) = L3k

−1 ◦ T0
(l) ◦ L3k(3

kq) =

= L3k
−1 ◦ T0

(l)(3kq/3k) =

= L3k
−1 ◦ T0

(l)(q) =

= L3k
−1(q) =

= 3kq .

(13)

In [2], a special type of generalization of T0(n) is con-
sidered, namely

TO(n) =

{
(3n+O)/2, for odd n,
n/2, for even n,

(14)

where O ≡ ±1 (mod 6). Thus, O is either of the form O =
= 6o + 1 or O = 6o − 1 for some integer o. Hence, in par-
ticular, O will never be a multiple of 3. We now extend the
result of the previous corollary to this generalization TO(n).

Theorem 2. The integral cycles of the map T3kO(n) are ex-
actly the integral cycles of TO(n), multiplied by 3k.

Proof: First, note that for any non-zero integers A and B, it
holds that

LA(LB(n)) = n/B/A = n/(B ·A) =

= n/(A ·B) = n/A/B = LB(LA(n)),
(15)

likewise, we have LB
−1(LA

−1(n)) = LA
−1(LB

−1(n)).

Just as in the case of Tk(n) we have TO(n) =
=LO

−1(T0(LO(n))) and T3kO(n) = L3kO
−1(T0(L3kO(n))).

And since L3kO(n) = L3k(LO(n)) we have

T
(l)

3kO
(n) = L3kO

−1 ◦ T0 ◦ L3kO ◦ L3kO
−1 ◦ T0 ◦ L3kO◦

◦ . . . ◦ L3kO
−1 ◦ T0 ◦ L3kO(n)︸ ︷︷ ︸

l

=

= L3k
−1 ◦ LO

−1 ◦ T0 ◦ LO ◦ L3k◦
◦ . . . ◦ L3k

−1 ◦ LO
−1 ◦ T0 ◦ LO ◦ L3k︸ ︷︷ ︸
l

(n) =

= L3k
−1 ◦ TO ◦ L3k ◦ L3k

−1 ◦ TO ◦ L3k◦
◦ . . . ◦ L3k

−1 ◦ TO ◦ L3k︸ ︷︷ ︸
l

(n) =

= L3k
−1 ◦ TO ◦ . . . TO︸ ︷︷ ︸

l

◦L3k(n) =

= L3k
−1 ◦ TO

(l) ◦ L3k(n).
(16)

Where the compositions on the first and second lines are ex-
actly l times, the compositions on the third and fourth lines
are exactly l times, and the compositions on lines five and
six are l times. Accordingly, we have

TO
(l)(n) = LO

−1(Tk
(l)(LO(n))), (17)

and

TO
(l)(n) = L3kO

−1(T0
(l)(L3kO(n))). (18)

Now, suppose that q is a integral cycle element of T3kO(n),
and let l be the length of this cycle. Then

q = L3k(TO
(l)(L3k(q))) ⇔ q/3k = TO

(l)(q/3k),
(19)
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hence q/3k is a (fractional) cycle element of TO(n). But we
also have that

q/3k = TO
(l)(q/3k) = LO

−1(T
(l)
0 (LO(q/3

k))) ⇔
⇔ q/(3kO) = T0

(l)(q/(3kO)).
(20)

Hence, q/(3kO) is a (rational) cycle element of T0(n). How-
ever, as shown above, there are no rational cycle elements of
T0(n) with a denominator divisible by 3. Therefore, q =
= 3k · q′ and q′/O is a (rational) cycle element of T0(n).
It follows that q/3k = 3k · q′/3k = q′ is an integral cycle
element of TO(n).

To complete the proof, we have

T3kO
(l)(q) = L3k(TO

(l)(q/3k)) =

= 3k · TO
(l)(q′) =

= 3k · q′ = q ,

(21)

so any cycle element of T3kO(n) is 3k times a cycle element
of TO(n). Now, suppose that q′ is a cycle element of TO(n)
then

T3kO
(l)(3k · q′) = L3k

−1(LO
(l)(L3k(3

k · q′))) =
= 3k · LO

(l)(3k · q′/3k) =
= 3k · LO

(l)(q′) =

= 3k · q′ .

(22)

Thus, 3k · q′ is an integral cycle element of T3kO(n).

Conclusion
We have shown that Tk(n) behaves on multiples of 3k

exactly as T0(n), and that any n becomes a multiple of 3k
after finitely many steps. Therefore, studying Tk(n) yields
no new information about T0(n). However, it might be the
case that if one were able to prove the conjecture for Tk(n),
this would automatically mean that they prove the conjecture
for T0(n). Likewise, we have shown that T3kO(n) behaves
on multiples of 3k exactly like TO(n), and that they have the
same integral cycles (up to a factor 3k). Consequently, all
heuristics for TO(n) also hold for T3kO(n).
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