$3n + 3^k$ Problem

D. Barina^{1*}, W.C. Maat²

¹ Brno University of Technology Faculty of Information Technology Bozetechova 2, 638 00 Brno *E-mail: ibarina@fit.vutbr.cz

² Independent researcher E-mail: willem@ai-brain.net

Received: 21 March 2025; revised: 20 August 2025; accepted: 21 August 2025

Abstract: The Collatz problem is generalized to the $3n + 3^k$ case. It is shown that as long as the Collatz function iterates converge to the cycle passing through the number 1, the $3n + 3^k$ sequence converges to the cycle passing through the number 3^k for arbitrary positive integers n and k. The proof demonstrates that the sequence of $3n + 3^k$ function iterates for a number $3^k n$ corresponds exactly to the sequence of Collatz iterates for n multiplied by 3^k .

Key words: Collatz conjecture, number theory, dynamical systems

The Collatz problem [3, 4] is a number theory problem that provides an algorithm for generating a sequence. The algorithm is as follows. Start with an arbitrary positive integer n. If n is even, divide it by two; if n is odd, multiply it by three and add one. The conjecture states that the sequence will always reach the number 1.

More formally, the Collatz conjecture asserts that a sequence defined by repeatedly applying the function

$$T_0(n) = \begin{cases} (3n+1)/2, & \text{for odd } n, \\ n/2, & \text{for even } n, \end{cases}$$
 (1)

always converges to the cycle passing through the number 1 for arbitrary positive integer n.

Theorem 1. As long as the T_0 iterates converge to 1, the sequence defined by repeatedly applying the function

$$T_k(n) = \begin{cases} (3n+3^k)/2, & \text{for odd } n, \\ n/2, & \text{for even } n, \end{cases}$$
 (2)

converges to the cycle passing through the number 3^k for any arbitrary positive integers n and k.

Note that the $3n + 3^k$ problem was recently discussed in [1].

Proof: The function $T_k(n)$ can be adjusted for multiples of three using

$$3 \cdot T_k(n) = \begin{cases} (3 \cdot 3n + 3^k \cdot 3)/2, & \text{for odd } n, \\ 3n/2, & \text{for even } n. \end{cases}$$
(3)

Now, substitute 3n for m (so that m is a multiple of 3). Then $3 \cdot T_k(n) = T_{k+1}(3n)$, and therefore

$$T_{k+1}(m) = \begin{cases} (3m+3^{k+1})/2, & \text{for odd } m, \\ m/2, & \text{for even } m. \end{cases}$$
 (4)

Note that 3n is odd when n is odd, and 3n is even when n is even. It means that the sequence of T_{k+1} iterates for m=3n corresponds exactly to the sequence of T_k iterates for n multiplied by 3.

Now we know the behavior of the trajectory of T_{k+1} when m is a multiple of 3. It remains to determine what happens to this trajectory when m is not a multiple of 3. If such a number is even, then we can repeatedly pull out all the factors of 2 (the even branch of T_{k+1}) until we reach an odd number. Therefore, we focus on odd m. A single iterate of the T_{k+1} function yields (3m+3)/2 (the odd branch of T_{k+1}), where (3m+3)/2 is a multiple of 3 (3m+3) is obviously a multiple of 3, the division by 2 has no effect on divisibility by 3). Note that the iterates of T_{k+1} converge to the

cycle passing through the number 3^{k+1} , which corresponds to $T_0(n)=1$.

Corollary 1.1. T_k iterates always lead to the cycle $1 \cdot 3^k \rightarrow 2 \cdot 3^k \rightarrow 1 \cdot 3^k$, assuming the Collatz conjecture holds.

The iterates of T_0 lead to the cycle $1 \to 2 \to 1$, where as the iterates of T_1 go to $3 \to 6 \to 3$, etc.

Corollary 1.2. The sequence of T_k iterates for a number $3^k n$ corresponds exactly to the sequence of T_0 iterates for n multiplied by 3^k .

In short, $T_k(3^k n) = 3^k T_0(n)$. See an example for T_0 , T_1 , and T_2 in Tab. 1.

Now, consider T_1 starting with an odd number n. The first T_1 takes us to (3n+3)/2, which is a number of the form 3m/2. Meanwhile, consider the even number n+1 and subject it to iteration T_0 . The result is (n+1)/2 (since the n+1 is even), which is the number of the form m/2. We can see that subsequent T_1 iterates correspond exactly to the T_0 iterates multiplied by 3. Thus, there is a relationship between the initial number n for T_1 and the number n+1 for T_0 . An example for the numbers 63 and 64 is given in Tab. 2.

In [2], Lagarias extends $T_0(n)$ to the rational numbers with odd denominators, and shows that any rational element q of a cycle of $T_0(n)$ must be of the form

$$q = \frac{\sum_{i=0}^{l-1} 3^i 2^{a_i}}{2^m - 3^l} \,, \tag{5}$$

for some $l \ge 0$, m > l and $m > a_0 > a_1 > \ldots > a_{l-1} \ge 0$.

Lemma 1.1. The map $T_0(n)$ has no non-zero rational cycle elements with a denominator which is a multiple of 3.

Proof: Suppose that l=0. Then $2^m-3^0=2^m-1$ can be a multiple of 3 (for instance, for m=4). However, in this case the sum in the numerator is 0, because we sum from i=0 to -1, which is an empty sum; therefore, q=0.

Now suppose that l>0. Then the numerator is $2^m-3^l\equiv 2^m\pmod 3$, and 2^m is never a multiple of 3, by the unique prime factorization of integers.

Another way of looking at $T_k(n)$ is by introducing the function $L_{3^k}(n) = n/3^k$. Notice that $L_{3^k}(n)$ is a bijection on the rational numbers with the inverse function $L_{3^k}^{-1}(n) = 3^k n$.

We have

$$T_k(n) = L_{3k}^{-1} \circ T_0 \circ L_{3k}(n).$$
 (6)

We now show this:

$$\begin{split} T_k(n) &= \begin{cases} (3n+3^k)/2, & \text{for odd } n, \\ n/2, & \text{for even } n \end{cases} = \\ &= \begin{cases} 3^k(3(n/3^k)+1)/2, & \text{for odd } n, \\ 3^k(n/3^k)/2, & \text{for even } n \end{cases} = \\ &= L_{3^k}^{-1} \circ T_0 \circ L_{3^k}(n). \end{split}$$

Considering our equation in (7), we obtain the following commutative diagram

$$\begin{array}{c|c}
n/3^k & \xrightarrow{T_0} T_0(n/3^k) \\
\downarrow^{L_{3^k}} & & \downarrow^{L_{3^k}-1} \\
n & \xrightarrow{T_k} T_k(n)
\end{array}$$

Using the notation $\mathbb{Q}[(2)]$ for all rational numbers with an odd denominator, iterating the above diagram yields the following diagram

$$\begin{array}{c|c} \mathbb{Q}[(2)] \xrightarrow{T_0} \mathbb{Q}[(2)] \xrightarrow{id} \mathbb{Q}[(2)] \xrightarrow{T_0} \mathbb{Q}[(2)] \\ L_{3k} & L_{3k}^{-1} & L_{3k}^{-1} \\ \mathbb{Q}[(2)] \xrightarrow{T_k} \mathbb{Q}[(2)] \xrightarrow{T_k} \mathbb{Q}[(2)] \end{array}$$

giving us

$$T_k(T_k(n)) = L_{3k}^{-1}(T_0(T_0(L_{3k}(n)))),$$
 (8)

and we may continue this process, since L_{3^k} and $L_{3^k}^{-1}$ cancel each other out. We will use this fact extensively in the proof of the next corollary.

Corollary 1.3. $T_k(n)$ has exactly the same integer cycles as $T_0(n)$, except that they are scaled by 3^k .

Proof: Let q be an element of an integral cycle of $T_k(n)$ of length l. Then

$$q = T_{k}^{(l)}(q) =$$

$$= L_{3k}^{-1} \circ T_{0} \circ L_{3k} \circ L_{3k} - 1 \circ T_{0} \circ L_{3k} \circ$$

$$\circ \underbrace{\dots \circ L_{3k}^{-1} \circ T_{0} \circ L_{3k}(q)}_{l} =$$

$$= L_{3k}^{-1} \circ \underbrace{T_{0} \circ \dots \circ T_{0}}_{l} \circ L_{3k}(q) =$$

$$= L_{3k}^{-1} \circ T_{0}^{(l)} \circ L_{3k}(q),$$
(9)

where $L_{3^k}{}^{-1}\circ T_0\circ L_{3^k}$ is composed exactly l times on the second and third lines. Applying L_{3^k} from the left to the first part of the equation above and the last part of the equation yields:

$$q/3^k = T_0^{(l)}(q/3^k), (10)$$

so $q/3^k$ is a rational cycle element of T_0 . However, by the preceding result, there are no rational cycle elements whose denominator is a multiple of 3. Therefore, $3^k|q$ and hence $q=3^kq'$. It follows that q' is a fixed point of $T_0^{(l)}$ since

$$q/3^{k} = T_{0}^{(l)}(q/3^{k}),$$

$$3^{k}q'/3^{k} = T_{0}^{(l)}(3^{k}q'/3^{k}),$$

$$q' = T_{0}^{(l)}(q').$$
(11)

 $3n + 3^k$ Problem 3

Tab. 1. T_0 , T_1 and T_2 function iterates

Function	Iteration								
	0	1	2	3	4	5	6		
T_2	189	288	144	72	36	18	9		
T_1	63	96	48	24	12	6	3		
T_0	21	32	16	8	4	2	1		

Tab. 2. T_0 and T_1 function iterates for starting values n+1 and n

Function	Iteration								
	0	1	2	3	4	5	6		
T_1	63	96	48	24	12	6	3		
T_0	64	32	16	8	4	2	1		

Hence, any integral cycle element of T_k is a integral cycle element of T_0 multiplied by 3^k .

Now, suppose that q is an integral cycle element of T_0 . We claim that $T_k^{(l)}(3^kq)=3^kq$. As shown above,

$$T_k^{(l)}(n) = L_{3k}^{-1} \circ T_0^{(l)} \circ L_{3k}(n),$$
 (12)

hence

$$T_{k}^{(l)}(3^{k}q) = L_{3^{k}}^{-1} \circ T_{0}^{(l)} \circ L_{3^{k}}(3^{k}q) =$$

$$= L_{3^{k}}^{-1} \circ T_{0}^{(l)}(3^{k}q/3^{k}) =$$

$$= L_{3^{k}}^{-1} \circ T_{0}^{(l)}(q) =$$

$$= L_{3^{k}}^{-1}(q) =$$

$$= 3^{k}q.$$
(13)

In [2], a special type of generalization of $T_0(n)$ is considered, namely

$$T_O(n) = \begin{cases} (3n+O)/2, & \text{for odd } n, \\ n/2, & \text{for even } n, \end{cases}$$
 (14)

where $O \equiv \pm 1 \pmod{6}$. Thus, O is either of the form O = 6o + 1 or O = 6o - 1 for some integer o. Hence, in particular, O will never be a multiple of o. We now extend the result of the previous corollary to this generalization $T_O(n)$.

Theorem 2. The integral cycles of the map $T_{3^kO}(n)$ are exactly the integral cycles of $T_O(n)$, multiplied by 3^k .

Proof: First, note that for any non-zero integers A and B, it holds that

$$L_A(L_B(n)) = n/B/A = n/(B \cdot A) =$$

= $n/(A \cdot B) = n/A/B = L_B(L_A(n)),$ (15)

likewise, we have $L_B^{-1}(L_A^{-1}(n)) = L_A^{-1}(L_B^{-1}(n))$.

Just as in the case of $T_k(n)$ we have $T_O(n) = L_O^{-1}(T_0(L_O(n)))$ and $T_{3^kO}(n) = L_{3^kO}^{-1}(T_0(L_{3^kO}(n)))$. And since $L_{3^kO}(n) = L_{3^k}(L_O(n))$ we have

$$T_{3^{k}O}^{(l)}(n) = L_{3^{k}O}^{-1} \circ T_{0} \circ L_{3^{k}O} \circ L_{3^{k}O}^{-1} \circ T_{0} \circ L_{3^{k}O} \circ \underbrace{\ldots \circ L_{3^{k}O}^{-1} \circ T_{0} \circ L_{3^{k}O}(n)}_{l} = \underbrace{L_{3^{k}}^{-1} \circ L_{O}^{-1} \circ T_{0} \circ L_{O} \circ L_{3^{k}} \circ \underbrace{\ldots \circ L_{3^{k}}^{-1} \circ L_{O}^{-1} \circ T_{0} \circ L_{O} \circ L_{3^{k}}}_{l}(n) = \underbrace{L_{3^{k}}^{-1} \circ T_{O} \circ L_{3^{k}} \circ L_{3^{k}}^{-1} \circ T_{O} \circ L_{3^{k}}}_{l}(n) = \underbrace{L_{3^{k}}^{-1} \circ T_{O} \circ L_{3^{k}} \circ L_{3^{k}}^{-1} \circ T_{O} \circ L_{3^{k}}}_{l}(n) = \underbrace{L_{3^{k}}^{-1} \circ T_{O} \circ L_{3^{k}}(n) = \underbrace{L_{3^{k}}^{-1} \circ T_{O} \circ L_{3^{k}}(n) = \underbrace{L_{3^{k}}^{-1} \circ T_{O}^{(l)} \circ L_{3^{k}}(n)}_{l}.$$

$$(16)$$

Where the compositions on the first and second lines are exactly l times, the compositions on the third and fourth lines are exactly l times, and the compositions on lines five and six are l times. Accordingly, we have

$$T_O^{(l)}(n) = L_O^{-1}(T_k^{(l)}(L_O(n))),$$
 (17)

and

$$T_O^{(l)}(n) = L_{3^kO}^{-1}(T_0^{(l)}(L_{3^kO}(n))). \tag{18}$$

Now, suppose that q is a integral cycle element of $T_{3^kO}(n)$, and let l be the length of this cycle. Then

$$q = L_{3^k}(T_O^{(l)}(L_{3^k}(q))) \Leftrightarrow q/3^k = T_O^{(l)}(q/3^k),$$
(19)

hence $q/3^k$ is a (fractional) cycle element of $T_{\cal O}(n)$. But we also have that

$$q/3^{k} = T_{O}^{(l)}(q/3^{k}) = L_{O}^{-1}(T_{0}^{(l)}(L_{O}(q/3^{k}))) \Leftrightarrow q/(3^{k}O) = T_{0}^{(l)}(q/(3^{k}O)).$$
(20)

Hence, $q/(3^kO)$ is a (rational) cycle element of $T_0(n)$. However, as shown above, there are no rational cycle elements of $T_0(n)$ with a denominator divisible by 3. Therefore, $q=3^k\cdot q'$ and q'/O is a (rational) cycle element of $T_0(n)$. It follows that $q/3^k=3^k\cdot q'/3^k=q'$ is an integral cycle element of $T_O(n)$.

To complete the proof, we have

$$T_{3^kO}^{(l)}(q) = L_{3^k}(T_O^{(l)}(q/3^k)) =$$

$$= 3^k \cdot T_O^{(l)}(q') =$$

$$= 3^k \cdot q' = q,$$
(21)

so any cycle element of $T_{3^kO}(n)$ is 3^k times a cycle element of $T_O(n)$. Now, suppose that q' is a cycle element of $T_O(n)$ then

$$T_{3^{k}O}^{(l)}(3^{k} \cdot q') = L_{3^{k}}^{-1}(L_{O}^{(l)}(L_{3^{k}}(3^{k} \cdot q'))) =$$

$$= 3^{k} \cdot L_{O}^{(l)}(3^{k} \cdot q'/3^{k}) =$$

$$= 3^{k} \cdot L_{O}^{(l)}(q') =$$

$$= 3^{k} \cdot q'.$$
(22)

Thus, $3^k \cdot q'$ is an integral cycle element of $T_{3^k O}(n)$. \square

Conclusion

We have shown that $T_k(n)$ behaves on multiples of 3^k exactly as $T_0(n)$, and that any n becomes a multiple of 3^k after finitely many steps. Therefore, studying $T_k(n)$ yields no new information about $T_0(n)$. However, it might be the case that if one were able to prove the conjecture for $T_k(n)$, this would automatically mean that they prove the conjecture for $T_0(n)$. Likewise, we have shown that $T_{3^kO}(n)$ behaves on multiples of 3^k exactly like $T_O(n)$, and that they have the same integral cycles (up to a factor 3^k). Consequently, all heuristics for $T_O(n)$ also hold for $T_{3^kO}(n)$.

Acknowledgment

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic under project e-INFRA CZ (ID:90254).

References

- [1] N. Boulkaboul, $3n + 3^k$: New perspective on Collatz conjecture (2022). arXiv:2212.00073.
- [2] J.C. Lagarias, *The set of rational cycles for the 3x+1 problem*, Acta Arithmetica **56**(1), 33–53 (1990).
- [3] J.C. Lagarias, The 3x + 1 problem: An annotated bibliography (1963–1999) (sorted by author) (2003). arXiv:math/0309224.
- [4] J.C. Lagarias, The 3x + 1 problem: An annotated bibliography, II (2000–2009) (2012). arXiv:math/0608208.

David Barina received his PhD degree from the Faculty of Information Technology, Brno University of Technology, Czechia. He is currently a member of the Graph@FIT group at the Department of Computer Graphics and Multimedia at FIT, Brno University of Technology. His research interests focus on wavelets and fast algorithms in signal and image processing.

Willem C. Maat received his master's degree from the Faculty of Mathematics and Information Technology, Utrecht University, The Netherlands. He currently works as a computer programmer for an insurance company and pursues mathematics in his spare time.