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Abstract: We extend our previous work on odd spoof multiperfect numbers to numbers with spoof factor multiplicities
greater than 2. As a result, we find 11 new integers that would be odd multiperfect, if only one of their prime factors had
higher multiplicity. An example is 181545, which would be an odd multiperfect number, if only one of its prime factors, 3,

had multiplicity 5.

Key words: odd perfect numbers, Descartes numbers, multiperfect numbers

1. Introduction

Recall that o(n) denotes the sum-of-divisors function
of the positive integer n, and n is said to be perfect if
o(n) = 2n, and multiperfect (or k-perfect) if o(n) = kn
for some positive integer & > 2. No odd perfect numbers
have been found so far, but Descartes noted that

D = 198585576189

would be an odd perfect number if only one of its composite
factors, 22021, were prime. Regrettably, 22021 = 192 . 61,
so this is not the case. Since Descartes, much effort has been
expended to find such “spoof perfect” numbers, without suc-
cess. In our previous paper [4], we discovered a few numbers
akin to D, for instance

S = 8999757 = 32 .13%.61 - 97,

which would be an odd multiperfect number if we assume
(wrongly) that one of its prime factors, 61, is a square. In-
deed, if that were the case, we would have

o(S) = (3> +3+1)(13* + 13+ 1)(97 + 1)(61% + 61 + 1)
=(13)-(3-61)-(2-7*)-(3-13-97)
=98.32.13%.61-97
= 988.

This led us to devise an algorithm to search for such numbers
and found several more. In this paper, our aim is to develop
our methods even further; first, by generalizing the concept
of spoof k-perfect numbers, and second, by extending our
search for numbers similar to D and S. As a result, we find
11 new odd positive integers which would be multiperfect, if
only one of their prime factors had higher multiplicity. One
such example is

T =181545=3-5-7%.13- 19,

which would be an odd multiperfect number, if only one of
its prime factors, 3 had multiplicity 5:
oT)= 3" +3*+3+32+3+ )G+ 1)(TP+7+1)
(I3+1)(19+1)
=(22-7-13)(2-3)(3-19)(2-7)(2* - 5)
=192-3-5-7%.13-19
= 192T.
In the next sections, we will provide a generalization of
spoof multiperfect numbers, and discuss some of their prop-
erties. We will then adapt Robin’s classical inequality to

spoof multiperfect numbers and provide details about the al-
gorithm we used to find our results, including pseudo-code.

II. Generalized spoof multiperfect numbers

In our previous paper [4], we defined two kinds of spoof
multiperfect numbers. In particular, we designated the posi-
tive integer s = nz as a spoof k-perfect number

1. of the first kind if o(n)(z + 1) = kna,
2. of the second kind if o(n)(x? + x + 1) = knaz,

for a positive integer £ > 2. We shall now introduce an ex-
tension of this definition by allowing the spoof factor x to
have any multiplicity greater than 2.

Definition 1 (Spoof k-perfect number of order ). Let s =
nx be a positive integer such that n,x € N and n,x > 2.
Furthermore, let « > 1 be an integer and define

S, = Z z®.
a=0
Then, if

o(n)Sy = knzx,
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for some positive integer k, then s is a spoof k-perfect num-
ber of order .

Note that the case @ = 1 corresponds to the classical
Descartes numbers, the case a = 2 to the numbers in our
previous work (such as 8999757), while the cases a > 2
form the basis of our study in this paper. A trivial example
of an odd spoof k-perfect number of order 3 is s = 15. In-
deed, if we assume (incorrectly) that its prime factor 3 has
multiplicity 3, then we have

o(s)=(5+1)-(33+32+3+1)
=2%.3.5
= 16s.

In hopes of finding such numbers, we implemented an al-
gorithm that finds all spoof multiperfect numbers of or-
der a within a given range, which we outline in Section
IV. We were thus able to check all integers s = nz with
n < 1.6 x 107, of order @ < 10. We found 14 spoof multi-
perfect numbers, of which 11 are new, for which x is a prime
that is also coprime to n. Table 1 shows these integers.

Table 1: Odd spoof k-perfect numbers s = nx of order «

s n T k «

15 5 3 16 | 3

33 11 3 44 | 4
1911 637 3 152 | 5
1989 153 13 || 280 | 3
34485 11495 3 56 | 4
36309 12103 3 160 | 5
77805 11115 7 16 | 2
92781 1521 61 97 | 2
105435 21087 5 256 | 4
181545 60515 3 192 | 5
241395 80465 3 64 | 4
8999757 147537 | 61 98 | 2
62998299 | 1032759 | 61 || 112 | 2
440988093 | 7229313 | 61 || 114 | 2

Note that the integers s = 77805, 92781, and 8999757 have
already been discovered in our previous paper. We also note
that the numbers s = 62998299 and 440988093 are re-
markable because they also have z = 61, which now ac-
counts for the majority of odd spoof multiperfect numbers
of order 2. It also appears in Descartes’ classical example
s = 198585576189, which is the only known odd spoof per-
fect number of order 1.

Many other odd spoof multiperfect numbers exist, for which
x is either composite, or prime but not coprime to n. We
have ommitted these numbers from the results that we share
in this paper.

As we noted in our previous paper, one may notice at this
point that multiperfect numbers of this magnitude should
not exist so early, due to an inequality discovered by Guy
Robin [2] in 1984, i.e., that

o(n) < e"nloglogn,

where 7 is the Euler-Mascheroni constant and n > 5040, if
and only if the Riemann Hypothesis is true. It thus follows
that we would expect a k-perfect number n to appear only
after

ke—
€
n>e ,

which is not the case in the spoof examples above. This ob-
servation leads us to examine the “spoof equivalent” of this
inequality, which we will do in the next section.

ITI. Robin’s inequality for spoof multiperfect numbers

We begin by adapting Robin’s inequality to spoof k-perfect
numbers in the following manner.

Lemma 1. Let s = nz denote a spoof k-perfect number
of order . Furthermore, let n > 5040. Then, assuming the
Riemann Hypothesis, we have:

k
S—i < e7loglogn,

where
«
S, = E z®.
a=0

Proof. Let s = nx denote a spoof k-perfect number of order
«. Thus, by Definition 1, we have

_kna

o(n) = 5.

On the other hand, Robin’s inequality states that for n >
5040,

o(n) < e"nloglogn.

Combining these two above gives

knz

< e’nloglogn,
and after simplifying n on both sides our claim is
proved. O

A quick corollary of the above gives a bound on the compo-
nents of the classical Descartes numbers.

Corollary 1. Let s = nx denote a Descartes number with
pseudo-prime factor z. Then, assuming the Riemann Hy-
pothesis, we have:

2
fjl < e"loglogn.
Proof. We simply apply Lemma 1 with £ = 2 and @ = 1.
Furthermore, we no longer need the restriction n > 5040
because no Descartes numbers exist with n smaller than
5040. ]
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IV. Algorithm

In this small final section, we give a few details about the
algorithm we used to find the results in this paper, which
is very similar to the one in our previous work [4]. We run
through positive integers n and compute the quantity

a(n)
 kn
Taking care that the fraction q is in the lowest terms possible
(i.e., the numerator ¢y, and denominator q4.,, have great-
est common divisor 1), we can compute their difference o:

0= dden — Qnum-

Then if

«a
§ : a
0= Qnum — num.,
a=0

we have found a spoof k-perfect number s = nz of order «,
where the spoof factor is * = qpum.

In practical terms, we can check if the positive integer n is
a suitable candidate as illustrated by the following pseudo-
code.

Algorithm 1 Check whether a positive integer n is an odd
spoof k-perfect number of order & < apqq

procedure CHECKCANDIDATE(N, 0y, Qpmaz, k)
q <+ on/(kxn)
Reduce|q]
num < Numerator|q]
den <+ Denominator]q]
delta < den — num
foro =1 — ayper do
S, + ComputeAlphaSum[n, ]
if delta == (S, — num) and num > 1 then
$ 4+ n X num
if Mod[s, 2] == 1 then
Print[’Found at” + s]
end if
end if
end for
end procedure

Note that the call to Reduce]q| ensures that the fraction ¢
is reduced to the lowest terms, as mentioned above. Further-
more, the ComputeAlphaSum function is a simple com-
puter implementation of the sum we defined previously,

(03
S, = E z®.
a=0

Putting everything together, we iterate through our search
space in the following manner.

Algorithm 2 Finding spoof multiperfect numbers of differ-
ent orders, given the defined limits 7,44, Kmaz, aNd Qpraz

procedure MAIN(Maz, Kmazs ®maz)
forn =1 — nye. do
0n <DivisorSigmaln]
for k =2 — k0. do
CheckCandidate(n, o,, @maz, K]
end for
end for
return sum
end procedure

Note that by computing o,, only once for each n, consider-
able computing time is gained, given that this operation is the
most expensive one in the algorithm in terms of computing
resources.

V. Conclusion and further work

In this paper we extended our previous work on odd spoof
multiperfect numbers and found several new examples of
odd positive integers that would be multiperfect, if only one
of their prime factors had higher multiplicity. Since our al-
gorithm is simple, it can easily be used to discover other ex-
amples with sufficient computing resources, and indeed we
hope that the present work will encourage others to do so.
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