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Abstract: We compute all primes up to 6.25×1028 of the form m2+1. Calculations using this list verify, up to our bound,
a less famous conjecture of Goldbach. We introduce ‘Goldbach champions’ as part of the verification process and prove
conditional results about them, assuming either Schinzel’s Hypothesis H or the Bateman-Horn Conjecture.
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I. Introduction

Goldbach’s most famous conjecture, ‘Goldbach’s
conjecture,’ is that every even integer greater than or
equal to four is the sum of two primes. He also con-
jectured erroneously that every odd composite number
n can be written as p + x2, where p is prime; Project
Euler [3] terms this ‘Goldbach’s other conjecture.’ The
two known counterexamples are 5777 and 5993 [7].
Here, we study ‘Goldbach’s other other conjecture.’

In an October 1, 1742 letter to Euler, Goldbach [5]
conjectured:

Conjecture 1. (Goldbach’s Other Other Conjecture)
Let A be the set of positive integers for which a2 + 1
is prime. All a > 1 in A can be expressed as b + c, for
some b, c ∈ A.

In 1912, not long after the proof of the Prime
Number Theorem, Landau [9] described determining
whether the set A is infinite as “unattackable at the
present state of science.” More than a century later, the
problem still resists all attempts — indeed the strongest
result in this direction [4] shows that there are infinitely
many primes of the form a2 + b4. Accordingly, we
present a computational algorithm and verification up to
a bound. While explaining heuristics to verify the con-
jecture, we introduce ‘Goldbach champions’ in Section
IV.

The sequence A is studied in another context. We
denote the largest prime factor of an integer n > 1 by
P (n). Pasten [8] recently improved Chowla’s 1934 re-

sults, showing that

P (n2 + 1) ≫ (log log n)2

log log log n
.

Using this notation, we restate |A| = ∞ as

|{n : P (n2 + 1) = n2 + 1}| = ∞.

If m2 + 1 is prime, we define Am = {a ≤ m :
a2 + 1 is prime} and test Conjecture 1 by looking at
the differences {m − a : a ∈ Am}. More precisely,
if |Am| = n, we enumerate the elements of Ax as
a1, · · · , an = m, where ai < aj if i < j. We look at
the differences an − an−1, an − an−2, · · · , an − a1 to
confirm that m = ai + aj for some 1 ≤ i ≤ j ≤ n− 1.
We then ask what is the smallest i ∈ [1, n − 1] such
that an − an−i ∈ Am, and how large i is with respect
to m. We denote this smallest value of i by j(m) and
examine it in Section IV. In Section V., we prove results
on the values of j(x) and the verification process, one
of which is conditional on the Bateman-Horn conjec-
ture and the others on Schinzel’s Hypothesis H. Table 2
compares champion values of j(an) to log n.

II. Enumeration of primes of the form m2 + 1

Wolf [12] computed the primes p = m2 + 1, for
p < 1020. Wolf and Gerbicz [11] then published a table
up to 1025. We extended their table up to 6.25× 1028.

Our computation uses three sieves, thereby creating
three lists of primes. Let B be the upper bound of our
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eventual list of primes p = m2 + 1, so that p < B. In
Wolf’s original article, B = 1020. The first step uses
the Sieve of Erathosthenes to generate the primes up
to B1/4. Our second list starts as all positive integers
z < B

1
2 , z ≡ 1 (mod 4). We then sieve using our first

list of primes, so our second list becomes the set of all
primes p < B

1
2 , p ≡ 1 (mod 4). We also compute the

roots of −1 modulo p for every prime on the second list,
and store them with said primes.

We now use our second list of primes to perform
the third sieve, on all positive integers x ≤ B1/2. If
B > x2 + 1 > B

1
2 , then x2 + 1 is prime if and only if

x is not a square root of −1 modulo any of the primes
in the second list. We therefore use the second list of
primes, with the accompanying list of square roots of
−1, to list the primes of the form m2 + 1.

From [2], p. 121, the number of operations to sieve
an array of length A with the primes up to P is

O(A log logP + P 1/2/ logP ). (1)

The first summand represents the required sieve up-
dates, and is mostly determined by the size of the array.
The second term represents the per-prime work to find
the sieve starting location, and depends on the number
of primes. For longer arrays, the first term dominates.
For shorter arrays, the second does.

First, we consider our algorithm’s computational
complexity, assuming the entire sieve array fits into
memory. We see later that our real-world conditions
are more complicated, but it makes sense to start
off analyzing the triple sieve’s computational com-
plexity without adding the extra hardware restrictions.
The first sieve (of Eratosthenes) (up to B1/4) takes
O(B1/4 log logB) operations, and the second sieve (up
to B1/2) takes O(B1/2 log logB) operations. Comput-
ing the roots of −1 requires computing 2(p−1)/4 mod p
for O(B1/2/ logB) primes. Each exponentiation takes
O(logB) operations, so the total work for comput-
ing the roots is O(B1/2). Thus the entirety of the
work done before embarking on the third sieve is
O(B1/2 log logB).

The third sieve is somewhat unusual in that both
the sieve array length and the size of the largest prime
is about B1/2. The sieve length is the same as in the
second sieve, potentially surprising some readers. This
is because the elements of A are the square roots of
one less than the primes. The number of operations
is O(B1/2 log logB + B1/4/ logB), which is again
O(B1/2 log logB). Therefore, the overall running time
of our triple sieve is O(B1/2 log logB).

We were ambitious and decided to find all primes p
of the form m2 + 1 with p < 6.25 × 1028 (see section
IV.). Unfortunately, a single sieve with B = 6.25×1028

would require tens of terabytes of memory to store the
two arrays for the second and third sieves, which would

be infeasible on virtually all modern machines. Let M
denote the maximum length of a sieve array that can
fit into memory. Then we require B1/2

M instances of the
second and third sieves, and find ourselves very familiar
with our file system.

The second sieve is essentially a Sieve of Eratos-
thenes. In the regular Sieve of Eratosthenes, we eas-
ily save a factor of two on memory by skipping even
numbers; here we save a factor of four by also skipping
numbers that are 3 mod 4. We load our length-M sec-
tion of our sieve array, and then we sieve by the primes
in our first list, i.e., the primes that are ≤ B1/4. For each
of the primes p in our first list, we need to find where
the first multiple of p is in our array of length M , be-
fore we proceed to sieve by p; that is an easy modular
reduction. The totality of these reductions is the second
term in Equation (1). Once we have finished sieving our
array of length M , we save all of the primes congruent
to 1 (mod 4) that we have found to our second list,
and compute the roots of −1 modulo these new, saved
primes. We then clear our memory and load our next
sieve array of length M . Note that M > B

1
4 , so we do

not need to load in our sieving primes; we only need to
load segments of the list that we sieve.

If we use Equation (1) to determine the time it takes
to sieve all of the B1/2

M instances, we get

O

(
B1/2

M
(M log logB +B1/4/ logB)

)
= O(B1/2 log logB +B3/4/(M logB)). (2)

The first term in our equation continues to dominate,
unless the memory available for the sieve area drops to
O( B1/4

logB log logB ). In practice, the sieve area never gets
that small. With our chosen value of B = 6.25× 1028,

B1/4

logB log logB is less than sixty thousand. A cursory ex-
amination of the constants involved shows that we cer-
tainly would not fill up multi-gigabyte machines.

Implementing the third sieve is trickier. Again, we
load our third sieve’s array of length M . This time we
sieve by our second list of primes, which is much longer
than our first list of primes, and the list of primes that
we are sieving by does not itself fit in our memory.
We therefore load the second list of primes sequentially
from a series of files, and sieve from the loaded list.
Note that every prime is loaded once, but this action
is so much smaller than the number of times we sieve
with a given prime that the file loading work is negligi-
ble compared to other work.

It is also trickier to sieve by any given p in our sec-
ond list of primes. We still need to find the first multi-
ple of our prime p in the array of length M , but we are
actually sieving by the associated roots ±r of −1. For
each root ±r, there may exist some x in our array of
length M that is less than the array’s first multiple of p
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such that x ≡ ±r. We spend much more time on the
per-prime computations (with respect to sieve updates)
than we did in the second sieve. In total, we do up to
four operations per prime before we start sieving with
it. That is, however, only a constant multiple and does
not affect the asymptotics.

Equation (1) shows that we lose efficiency when
the sieve array size drops below O( B1/4

logB log logB ) —
in other words, when the number of instances exceeds
O(logB log logB). We used 9000 instances, and as
B = 6.25 × 1028, one would assume from the given
asymptotics that loading our sieve arrays was efficient.
We did not, however, do a detailed analysis involv-
ing constants, and we suspect we were either near or
past the point at which we lose efficiency. As we did
not have larger-memory machines available to us at the
time, we had no choice but to accept any such loss.

Sample code is available at https://github.
com/31and8191/Goldbach1.

III. Computational Results

We use Wolf’s notation that πq(x) is the number of
primes of the form m2 + 1 up to x.

As Wolf notes, Hardy and Littlewood’s Conjecture
E [6] gives πq(x) ∼ f(x), where

f(x) = Cq

√
x

log x

and

Cq =
∏
p≥3

(
1− (−1)(p−1)/2

p− 1

)
=

∏
p≡1(mod4)

p− 2

p− 1

∏
p≡3(mod4)

p

p− 1
= 1.3728 . . .

More precise heuristics give πq(x) ∼ g(x), with
g(x) =

Cq

2 li(
√
x). In his Table I, Wolf computed

the values of πq(x), f(x), πq(x)/f(x), g(x), and
πq(x)/g(x) for x = 10a, where a ranges from 6 to
20. Wolf and Gerbicz [11] then computed the appropri-
ate values for πq(x) when a ranges from 21 to 25. We
repeat and extend their results in Table 1.

IV. Verifying Goldbach’s Other Other Conjecture

We confirmed Goldbach’s other other conjecture up
to 6.25 × 1028, i.e., for a up to 2.5 × 1014. The list of
primes takes up more than 30 terabytes on disk — it
would be challenging to search through that whole list
for each prime to find a difference in our set.

Instead, we asked the following naive questions,
and used them to guide our simple verification strategy.
Let A be the set of all a such that a2 + 1 is prime and
let us enumerate them in order, so A = {an}. The sets
Am in the introduction are truncations of A.

• Is an − an−1 = ai for some i?

• How about an − an−2?

• How far back do you have to go?

To tackle these questions, note that Section III.’s claim
that πq(x) ∼ Cq

√
x

log x is equivalent to saying an ∼
2
Cq

n log 2n
Cq

.
Let j(an) be the smallest value of i such that an −

an−i = ak for some k. We call an a Goldbach cham-
pion if j(ai) < j(an) for all i < n. Table 2 contains a
list of all champions for an < 2.5× 1014.

V. Conditional results about the growth of j(n)

Popular conjectures about prime values of polyno-
mials imply interesting patterns in the distribution of
the sequence an.

Conjecture 2. (Schinzel’s Hypothesis H [10]) A set of
polynomials fi(x) satisfies the Bunyakovsky condition
if there is no p for which

∏
fi(a) ≡ 0 for all a ∈ Fp.

Under this assumption, the polynomials are simultane-
ously prime for infinitely many values of x.

Proposition 1. Assuming Hypothesis H, j(an) > 1 in-
finitely often.

Proof. Let f1(y) = (65y + 9)2 + 1 and f2(y) =
(65y + 1)2 + 1. Since each polynomial has at most
2 roots, f1(a)f2(a) cannot be 0 for all a ∈ Fp when
p ≥ 5. It is easy to check f1(a)f2(a) is not always 0
for all a ∈ Fp when p is either 2 or 3. Our set therefore
satisfies the Bunyakovsky condition, and thus the two
functions will be simultaneously prime infinitely often,
assuming Hypothesis H. To see that they are consecu-
tive primes of the form x2 +1, look at the intermediate
values.

(65y + 3)2 + 1 ≡ 0 (mod 5)

(65y + 5)2 + 1 ≡ 0 (mod 13)

(65y + 7)2 + 1 ≡ 0 (mod 5)

The difference (65y + 9)− (65y + 1) = 8 is not in
A, so j(an) > 1 infinitely often.

We can, in fact, prove a much stronger result if we
assume the Bateman-Horn Conjecture [1, p. 363].
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x πq(x) πq(x)/f(x) πq(x)/g(x)
101 2 1.06080 1.20841
102 4 1.34181 0.92957
103 10 1.59120 1.07127
104 19 1.27472 0.91567
105 51 1.35252 1.04253
106 112 1.12713 0.91869
107 316 1.17325 0.99440
108 841 1.12847 0.98321
109 2378 1.13516 1.00888
1010 6656 1.11639 1.00696
1011 18822 1.09815 1.00184
1012 54110 1.08909 1.00258
1013 156081 1.07621 0.99805
1014 456362 1.07162 0.99991
1015 1339875 1.06601 0.99984
1016 3954181 1.06116 0.99974
1017 11726896 1.05739 1.00005
1018 34900213 1.05367 0.99991
1019 104248948 1.05058 0.99997
1020 312357934 1.04782 1.00001
1021 938457801 1.04529 0.999996
1022 2826683630 1.04305 1.000005
1023 8533327397 1.04100 0.999998
1024 25814570672 1.03915 1.000008
1025 78239402726 1.03746 1.000004
1026 237542444180 1.03590 1.000003
1027 722354138859 1.03447 1.00000003
1028 2199894223892 1.03315 1.00000019

6.25× 1028 5342656862803 1.03217 0.99999976

Tab. 1. Prime counts

The Bateman-Horn Conjecture states that the num-
ber of values less than x, for which a set of k polyno-
mials satisfying the Bunyakovsky condition is simul-
taneously prime, is proportional to x

logk(x)
, and gives

the proportionality constant, which we will not use. The
Bateman-Horn conjecture strengthens Hypothesis H.

Lemma 1. Given a sequence {yn} of density 0 and a
positive integer k, there exists a set {b0, b1, . . . , bk−1}
such that the bi ̸∈ {yi} and the set of polynomials
{fi = (x2 − bi)} satisfies the Bunyakovsky condition.

Proof. By the Chinese Remainder Theorem, there is a
b such that for each prime p ≤ 2k, b2 + 1 ̸≡ 0 mod p.
Because the set of yi’s has zero density and the num-
bers equivalent to b modulo all small primes has posi-
tive density, we can choose a set of bi’s congruent to b
which avoids the sequence {yn}. For primes p ≤ 2k, all
of the fi(0) ̸≡ 0 modulo said primes, and the condition
is satisfied. The product of the fi’s has degree 2k, and
therefore cannot be identically zero modulo any prime
p > 2k.

Proposition 2. Assuming the Bateman-Horn Conjec-
ture,

lim sup
n→∞

j(an) = ∞.

Proof. We demonstrate that for any k, there are in-
finitely many an with j(an) ≥ k.

The preceding lemma shows we can form a se-
quence b0 = 0, b1, ..., bk−1 of elements not in A such
that the set {fi(m) = (m− bi)

2 +1} satisfies the Bun-
yakovsky condition.

Assuming the Bateman-Horn conjecture, there are
asymptotically c x

logk(x)
values of m less than x, c > 0,

where all of the polynomials take prime values. If there
are no other values d, where 0 < d < bk−1, such that
(m− d)2 + 1 is prime, then we have that j(m) ≥ k.

Assume that there are only finitely many m such
that there exist no other described d. Then for all but
finitely many m, (m − d)2 + 1 is prime for at least
one d, with 0 < d < bk−1, that is not equal to any
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n an
2
Cq

n log 2n
Cq

j(an)
j(an)
logn

16 74 106 3 1.08
55 384 507 6 1.50
100 860 1047 7 1.52
173 1614 2011 10 1.94
654 7304 9429 12 1.85

1188 14774 18618 14 2.00
2815 37884 49220 17 2.14
6868 103876 132962 21 2.38
11913 191674 244421 23 2.45
36533 651524 835598 24 2.28
38073 681474 874125 26 2.47
62688 1174484 1504969 38 3.44
480452 10564474 13590903 44 3.63
837840 19164094 24679882 48 3.52

1286852 30294044 39066897 52 3.70
10451620 279973066 363307290 56 3.46
25218976 709924604 923322569 58 3.40
68826857 2043908624 2665142759 64 3.55
79601233 2381625424 3106685030 65 3.57
157044000 4862417304 6353414906 69 3.66
266774400 8476270536 11089804641 70 3.61
337231328 10835743444 14184814636 71 3.62

1702595832 58917940844 77409688313 83 3.90
2524491445 88874251714 116867691886 90 4.16
3079006270 109327832464 143823180284 105 4.81
63281910377 2537400897706 3358032936033 125 5.03

Tab. 2. Champion values of j(a)

of the bi. By the pigeonhole principle, at least one
of the potential d’s creates a (k + 1)-st polynomial
fx+1(m) = (x − d)2 + 1 such that there are asymp-
totically c′ y

log2 y
values of m less than y, with c′ > 0,

such that f1(m), f2(m), . . . , fk+1(m) are all simulta-
neously prime. That contradicts the Bateman-Horn con-
jecture, which says that the set {fi, (m− d)2 + 1} can
have asymptotic count at most c′′ y

logk+1(y)
for some

c′′ > 0. Therefore there exist infinitely many m such
that j(m) ≥ k. Our choice of k was arbitrary, so
lim supn→∞ j(an) = ∞.

Proposition 3. Assuming Hypothesis H,
lim infn→∞ j(an) = 1.

Proof. Consider the polynomials x2+1 and (x−2)2+
1. By the above lemma, they satisfy the Bunyakovsky
condition. By Hypothesis H, there are infinitely many
ai with both a2i + 1 and (ai − 2)2 + 1 prime. Be-
cause (ai − 1)2 + 1 must be even, ai−1 = ai − 2, and
ai − ai−1 = 2, which is a member of our set A.

In particular, this shows that Goldbach’s other other

conjecture is true infinitely often.

VI. Further Work

In a follow-up paper, we generalize Goldbach’s
other other conjecture to cyclotomic polynomials other
than Φ4(x) = x2 + 1. We thank Michael Filaseta for
noting that Goldbach’s other other conjecture is equally
plausible when looking at representations of all positive
integers, not just primes. Our forthcoming paper also
explores that intriguing path.

We did not further explore the function j(an).
While it looks like j(an) grows infinitely large, we do
not have a growth result for j(an). Arithmetic statis-
ticians may want to explore the ‘expected value of
j(an).’ Hypothesis H implies that j(an) is one in-
finitely often, but there may be a nice formula approxi-
mating j(an) most of the time.
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