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Abstract: We compute all primes up to 6.25 x 1028 of the form m? + 1. Calculations using this list verify, up to our bound,
a less famous conjecture of Goldbach. We introduce ‘Goldbach champions’ as part of the verification process and prove
conditional results about them, assuming either Schinzel’s Hypothesis H or the Bateman-Horn Conjecture.
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1. Introduction

Goldbach’s most famous conjecture, ‘Goldbach’s con-
jecture’, is that every even integer greater than or equal to
four is the sum of two primes. He also conjectured erro-
neously that every odd composite number n can be written as
p+ 22, where p is prime; Project Euler [3] terms this ‘Gold-
bach’s other conjecture’. The two known counterexamples
are 5777 and 5993 [7]. Here, we study ‘Goldbach’s other
other conjecture’.

In an October 1, 1742 letter to Euler, Goldbach [5] con-
jectured:

Conjecture 1. (Goldbach’s Other Other Conjecture) Let
A be the set of positive integers for which a? + 1 is prime.
All @ > 1in A can be expressed as b + ¢, for some b, ¢ € A.

In 1912, not long after the proof of the Prime Number
Theorem, Landau [9] described determining whether the set
A is infinite as “unattackable at the present state of sci-
ence”. More than a century later, the problem still resists
all attempts — indeed the strongest result in this direction
[4] shows that there are infinitely many primes of the form

a? + b*. Accordingly, we present a computational algorithm
and verification up to a bound. While explaining heuristics to
verify the conjecture, we introduce ‘Goldbach champions’ in
Sec. IV.

The sequence A is studied in another context. We denote
the largest prime factor of an integer n > 1 by P(n). Pas-
ten [8] recently improved Chowla’s 1934 results, showing
that

log 1 2
Pn*+1)> {loglogn)” .
logloglogn

Using this notation, we restate |A| = oo as
Hn:P(n*+1)=n*+1} =cc.

If m2 + 1 is prime, we define A,, = {a < m
a® + 1 is prime} and test Conjecture 1 by looking at the dif-
ferences {m — a : a € A,,}. More precisely, if |4,,| = n,
we enumerate the elements of A, asaq,- - ,a, = m, where
a; < ajifi < j. We look at the differences a,, — a,,—1, an +

—Qp—2, "+ , 0y — a1 to confirm that m = a; + a; for some
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1 < ¢ < 7 < n— 1. We then ask what is the smallest
i € [1,n — 1] such that a,, — a,,—; € A, and how large
1 is with respect to m. We denote this smallest value of ¢ by
j(m) and examine it in Sec. IV. In Sec. V, we prove results on
the values of j(x) and the verification process, one of which
is conditional on the Bateman-Horn conjecture and the oth-
ers on Schinzel’s Hypothesis H. Tab. 2 compares champion
values of j(ay) to logn.

II. Enumeration of Primes of the Form m? + 1

Wolf [12] computed the primes p = m? + 1, for
p < 10%°. Wolf and Gerbicz [11] then published a table up
to 10%5. We extended their table up to 6.25 x 1028,

Our computation uses three sieves, thereby creating three
lists of primes. Let B be the upper bound of our eventual list
of primes p = m? + 1, so that p < B. In Wolf’s original arti-
cle, B = 1020, The first step uses the Sieve of Erathosthenes
to generate the primes up to B/%. Our second list starts as
all positive integers z < BZ,z = 1 (mod 4). We then sieve
using our first list of primes, so our second list becomes the
set of all primes p < Bi,p=1 (mod 4). We also compute
the roots of —1 modulo p for every prime on the second list,
and store them with said primes.

We now use our second list of primes to perform the third
sieve, on all positive integers * < BY2. If B > 22 + 1 >
> Bz, then 22 + 1 is prime if and only if x is not a square
root of —1 modulo any of the primes in the second list.
We therefore use the second list of primes, with the accom-
panying list of square roots of —1, to list the primes of the
form m? + 1.

From [2], p. 121, the number of operations to sieve an
array of length A with the primes up to P is

O(Aloglog P+ P2 /1og P) . (D

The first summand represents the required sieve updates, and
is mostly determined by the size of the array. The second
term represents the per-prime work to find the sieve starting
location, and depends on the number of primes. For longer
arrays, the first term dominates. For shorter arrays, the sec-
ond does.

First, we consider our algorithm’s computational com-
plexity, assuming the entire sieve array fits into memory.
We see later that our real-world conditions are more com-
plicated, but it makes sense to start off analyzing the triple
sieve’s computational complexity without adding the ex-
tra hardware restrictions. The first sieve (of Eratosthenes)
(up to B'Y/*) takes O(B'/*loglog B) operations, and the
second sieve (up to B'/?) takes O(B'/?loglog B) op-
erations. Computing the roots of —1 requires computing
2(P=1/4 mod p for O(B/?/log B) primes. Each expo-
nentiation takes O(log B) operations, so the total work
for computing the roots is O(B'/?). Thus the entirety
of the work done before embarking on the third sieve is
O(B'/?1oglog B).

The third sieve is somewhat unusual in that both the
sieve array length and the size of the largest prime is about

B'/2. The sieve length is the same as in the second sieve,
potentially surprising some readers. This is because the el-
ements of A are the square roots of one less than the
primes. The number of operations is O(B'/?loglog B +
+B'*/1og B), which is again O(B'/?loglog B). There-
fore, the overall running time of our triple sieve is
O(B'/?loglog B).

We were ambitious and decided to find all primes p of
the form m? + 1 with p < 6.25 x 10?8 (see Sec. IV). Un-
fortunately, a single sieve with B = 6.25 x 10%® would re-
quire tens of terabytes of memory to store the two arrays for
the second and third sieves, which would be infeasible on
virtually all modern machines. Let M denote the maximum
length of a sieve array that can fit into memory. Then we re-

. 1/2 S
quire BT instances of the second and third sieves, and find

ourselves very familiar with our file system.

The second sieve is essentially a Sieve of Eratosthenes.
In the regular Sieve of Eratosthenes, we easily save a factor
of two on memory by skipping even numbers; here we save
a factor of four by also skipping numbers that are 3 mod 4.
We load our length-M section of our sieve array, and then
we sieve by the primes in our first list, i.e., the primes that
are < B'/*, For each of the primes p in our first list, we need
to find where the first multiple of p is in our array of length
M, before we proceed to sieve by p; that is an easy modu-
lar reduction. The totality of these reductions is the second
term in Eq. (1). Once we have finished sieving our array of
length M, we save all of the primes congruent to 1 (mod 4)
that we have found to our second list, and compute the roots
of —1 modulo these new, saved primes. We then clear our
memory and load our next sieve array of length M. Note that

M > B%, so we do not need to load in our sieving primes;
we only need to load segments of the list that we sieve.
If we use Eq. (1) to determine the time it takes to sieve

1/2
all of the BT instances, we get

B1/2
0 ( 7 (M loglog B +B1/4/logB)> =

= O(B'?loglog B 4+ B*/*/(M log B)) .

@

The first term in our equation continues to dominate, un-
less the memory available for the sieve area drops to

Bl/4 . .
O(iosBlogiog5)- In practice, the sieve area never gets

that small. With our chosen value of B = 6.25 x 1028,

m is less than sixty thousand. A cursory examina-
tion of the constants involved shows that we certainly would
not fill up multi-gigabyte machines.

Implementing the third sieve is trickier. Again, we load
our third sieve’s array of length M. This time we sieve by our
second list of primes, which is much longer than our first list
of primes, and the list of primes that we are sieving by does
not itself fit in our memory. We therefore load the second list
of primes sequentially from a series of files, and sieve from
the loaded list. Note that every prime is loaded once, but this
action is so much smaller than the number of times we sieve
with a given prime that the file loading work is negligible
compared to other work.
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It is also trickier to sieve by any given p in our second list
of primes. We still need to find the first multiple of our prime
p in the array of length M, but we are actually sieving by the
associated roots £ of —1. For each root 7, there may exist
some z in our array of length M that is less than the array’s
first multiple of p such that x = £r. We spend much more
time on the per-prime computations (with respect to sieve
updates) than we did in the second sieve. In total, we do up
to four operations per prime before we start sieving with it.
That is, however, only a constant multiple and does not affect
the asymptotics.

Eq. (1) shows that we lose efficiency when the sieve

. Bl/4 .
array size drops below O( W) — in other words,

when the number of instances exceeds O(log Bloglog B).
We used 9000 instances, and as B = 6.25 x 102®, one would
assume from the given asymptotics that loading our sieve ar-
rays was efficient. We did not, however, do a detailed analy-
sis involving constants, and we suspect we were either near
or past the point at which we lose efficiency. As we did not
have larger-memory machines available to us at the time, we
had no choice but to accept any such loss.
Sample code is available here!.

III. Computational Results

We use Wolf’s notation that m,(x) is the number of
primes of the form m? + 1 up to x.

As Wolf notes, Hardy and Littlewood’s Conjecture E [6]
gives my(x) ~ f(x), where

_ oV
f(l‘) - Cq IOgZC
and
—1)(-1)/2
o= T1 (1- 20 -
p>3 p=
p—2 P
= —_— —— =1.3728...
p—1 H -1
p=1(mod4) p=3(mod4)

More precise heuristics give m,(z) ~ g(z), with g(z) =
=& h(\f ) In his Tab. I, Wolf computed the values of
my(@), $(0). m@)/f(0). 9(a), and m,(z)/g() for = =
= 107, where a ranges from 6 to 20. Wolf and Gerbicz
[11] then computed the appropriate values for m,(z) when
a ranges from 21 to 25. We repeat and extend their results
in Tab. 1.

IV. Verifying Goldbach’s Other Other Conjecture

We confirmed Goldbach’s other other conjecture up to
6.25 x 10?8, i.e., for a up to 2.5 x 104, The list of primes

! https://github.com/31and8191/Goldbach1

takes up more than 30 terabytes on disk — it would be chal-
lenging to search through that whole list for each prime to
find a difference in our set.

Instead, we asked the following naive questions, and
used them to guide our simple verification strategy. Let A be
the set of all a such that a® + 1 is prime and let us enumerate
them in order, so A = {a,,}. The sets A, in the introduction
are truncations of A.

e Isa,, — a,—1 = a; for some 7?

e How about a,, — a,,_2?

* How far back do you have to go?

To tackle these questions, note that Sec. III’s claim that

o () ~

Letj (an) be the smallest value of 4 such that a,,—a,,—; =
= ay for some k. We call a,, a Goldbach champion
if j(a;) < j(a,) for all ¢ < n. Tab. 2 contains a list of
all champions for a,, < 2.5 x 104

~ C, f - is equivalent to saying a,, ~ &nlog 2
q

V. Conditional Results About the Growth of j(n)

Popular conjectures about prime values of polynomials
imply interesting patterns in the distribution of the sequence
Q-

Conjecture 2. (Schinzel’s Hypothesis H [10]) A set of poly-
nomials f;(x) satisfies the Bunyakovsky condition if there is
no p for which [] fi(a) = 0 for all a € F,. Under this
assumption, the polynomials are simultaneously prime for
infinitely many values of z.

Proposition 1. Assuming Hypothesis H, j(a,) > 1 in-
finitely often.

Proof: Let f1(y) = (65y+9)?+1and fo(y) = (65y+1)2+
+1. Since each polynomial has at most 2 roots, f1(a)f2(a)
cannot be O for all @ € F, when p > 5. It is easy to check
fi(a) f2(a) is not always 0 for all @ € [F,, when p is either
2 or 3. Our set therefore satisfies the Bunyakovsky condition,
and thus the two functions will be simultaneously prime in-
finitely often, assuming Hypothesis H. To see that they are
consecutive primes of the form x2 + 1, look at the interme-
diate values.

65y +3)>+1=0 (mod 5),
65y +5)>+1=0 (mod 13),
65y +7)>+1=0 (mod5).

The difference (65y +9) —

(65y+1) = 8isnotin A, so
j(ay) > 1 infinitely often. O

We can, in fact, prove a much stronger result if we as-
sume the Bateman-Horn Conjecture [1, p. 363].

The Bateman-Horn Conjecture states that the number of
values less than x, for which a set of £ polynomials satis-
fying the Bunyakovsky condition is simultaneously prime,
is proportional to m, and gives the proportionality con-
stant, which we will not use. The Bateman-Horn conjecture
strengthens Hypothesis H.
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Tab. 1. Prime counts

x mq(x)  me(x)/f(z) me(x)/g(x)
10! 2 1.06080 1.20841
102 4 1.34181 0.92957
10° 10 1.59120 1.07127
10* 19 1.27472 0.91567
10° 51  1.35252 1.04253
10 112 1.12713 0.91869
107 316 1.17325 0.99440
10® 841 1.12847 0.98321
10° 2378 1.13516 1.00888

10%° 6656 1.11639 1.00696
10t 18 822  1.09815 1.00184
10"? 54110 1.08909 1.00258
10" 156 081  1.07621 0.99805
104 456 362 1.07162 0.99991
10% 1339875 1.06601 0.99984
10'6 3954181 1.06116 0.99974
10%7 11726 896  1.05739 1.00005
10*® 34900213  1.05367 0.99991
10%° 104 248 948 1.05058 0.99997
10%° 312357934  1.04782 1.00001
10 938457 801  1.04529 0.999996
10%* 2826 683 630  1.04305 1.000005
10% 8533327397  1.04100 0.999998
10% 25814570672 1.03915 1.000008
10% 78 239 402 726 1.03746 1.000004
10%¢ 237 542 444 180  1.03590 1.000003
1027 722354138859  1.03447 1.00000003
10%® 2199894223892 1.03315 1.00000019
6.25 x 10%® 5342 656 862803  1.03217 0.99999976

Lemma 1. Given a sequence {y,,} of density 0 and a posi-
tive integer k, there exists a set {bg, b1, . .., bx—1} such that
the b; ¢ {y;} and the set of polynomials {f; = (2% — b;)}
satisfies the Bunyakovsky condition.

of the f;’s has degree 2k, and therefore cannot be identically
zero modulo any prime p > 2k. O

Proposition 2. Assuming the Bateman-Horn Conjecture,

limsup j(a,) = oo .

Proof: By the Chinese Remainder Theorem, there is n—roo

a b such that for each prime p < 2k, b* + 1 # 0 mod p. Be-
cause the set of y;’s has zero density and the numbers equiv-
alent to b modulo all small primes has positive density, we

Proof: We demonstrate that for any k, there are infinitely
many a,, with j(a,) > k.
The preceding lemma shows we can form a sequence

can choose a set of b;’s congruent to b which avoids the se- by = 0,b1,...,b,_1 of elements not in A such that the set
quence {y,, }. For primes p < 2k, all of the f;(0) £ 0 mod-  {fi(m) = (m — b;)? + 1} satisfies the Bunyakovsky condi-
ulo said primes, and the condition is satisfied. The product tion.
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Tab. 2. Champion values of j(a)

n an C%n log é—z jlan) %

16 74 106 3 1.08

55 384 507 6 1.50

100 860 1047 7 1.52

173 1614 2011 10 1.94

654 7304 9429 12 1.85

1188 14774 18 618 14 2.00

2 815 37 884 49 220 17 2.14

6 868 103 876 132 962 21 2.38

11913 191 674 244 421 23 2.45

36 533 651 524 835 598 24 2.28
38073 681 474 874125 26 2.47

62 688 1174484 1504 969 38 3.44

480 452 10 564 474 13 590 903 44 3.63

837 840 19 164 094 24 679 882 48 3.52
1286 852 30 294 044 39 066 897 52 3.70

10 451 620 279973 066 363 307 290 56 3.46
25218 976 709 924 604 923 322 569 58 3.40
68 826 857 2043 908 624 2665 142 759 64 3.55
79 601 233 2381 625 424 3106 685 030 65 3.57
157 044 000 4862417 304 6 353 414 906 69 3.66
266 774 400 8 476 270 536 11 089 804 641 70 3.61
337 231 328 10 835 743 444 14 184 814 636 71 3.62
1702 595 832 58 917 940 844 77 409 688 313 83 3.90
2 524 491 445 88 874 251 714 116 867 691 886 90 4.16
3079 006 270 109 327 832 464 143 823 180 284 105 4.81

63 281910377 2537 400 897 706

3358 032 936 033 125 5.03

Assuming the Bateman-Horn conjecture, there are
asymptotically clog% values of m less than x, ¢ > 0,

where all of the polynomials take prime values. If there
are no other values d, where 0 < d < bg_1, such that
(m — d)? + 1 is prime, then we have that j(m) > k.
Assume that there are only finitely many m such that
there exist no other described d. Then for all but finitely
many m, (m — d)2 + 1 is prime for at least one d, with
0 < d < bg—1, that is not equal to any of the b;. By the
pigeonhole principle, at least one of the potential d’s cre-
ates a (k + 1)-st polynomial f,;(m) = (z — d)? + 1 such

that there are asymptotically ¢’ o Y— values of m less than y,

with ¢/ > 0, such that f1(m), fa(m), ..., fr4+1(m) are all
simultaneously prime. That contradicts the Bateman-Horn
conjecture, which says that the set {f;, (m — d)? + 1} can
have asymptotic count at most ¢’ m for some ¢” > 0.

Therefore there exist infinitely many m such that j(m) > k

Our choice of k was arbitrary, so limsup,, . j(a,) = cc.
O

Proposition 3. Assuming Hypothesis H,

hnnilgf](an) =1.
Proof: Consider the polynomials 22 + 1 and (z — 2)? + 1.
By the above lemma, they satisfy the Bunyakovsky condi-
tion. By Hypothesis H, there are infinitely many a; with both
a?+1and (a; —2)%+1 prime. Because (a; —1)%+1 must be
even, a;_1 = a; — 2, and a; — a;—1 = 2, which is a member
of our set A. O

In particular, this shows that Goldbach’s other other con-
jecture is true infinitely often.



54 J. Grantham, H. Graves

VI. Further Work

In a follow-up paper, we generalize Goldbach’s other
other conjecture to cyclotomic polynomials other than
®4(x) = 2? + 1. We thank Michael Filaseta for noting that
Goldbach’s other other conjecture is equally plausible when
looking at representations of all positive integers, not just
primes. Our forthcoming paper also explores that intriguing
path.

We did not further explore the function j(a,). While
it looks like j(a,) grows infinitely large, we do not have
a growth result for j(a, ). Arithmetic statisticians may want
to explore the ‘expected value of j(a,)’. Hypothesis H im-
plies that j(a,) is one infinitely often, but there may be
a nice formula approximating j(a,,) most of the time.
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