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Abstract: We compute all primes up to 6.25×1028 of the form m2+1. Calculations using this list verify, up to our bound,
a less famous conjecture of Goldbach. We introduce ‘Goldbach champions’ as part of the verification process and prove
conditional results about them, assuming either Schinzel’s Hypothesis H or the Bateman-Horn Conjecture.
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I. Introduction

Goldbach’s most famous conjecture, ‘Goldbach’s con-
jecture’, is that every even integer greater than or equal to
four is the sum of two primes. He also conjectured erro-
neously that every odd composite number n can be written as
p+ x2, where p is prime; Project Euler [3] terms this ‘Gold-
bach’s other conjecture’. The two known counterexamples
are 5777 and 5993 [7]. Here, we study ‘Goldbach’s other
other conjecture’.

In an October 1, 1742 letter to Euler, Goldbach [5] con-
jectured:

Conjecture 1. (Goldbach’s Other Other Conjecture) Let
A be the set of positive integers for which a2 + 1 is prime.
All a > 1 in A can be expressed as b+ c, for some b, c ∈ A.

In 1912, not long after the proof of the Prime Number
Theorem, Landau [9] described determining whether the set
A is infinite as “unattackable at the present state of sci-
ence”. More than a century later, the problem still resists
all attempts – indeed the strongest result in this direction
[4] shows that there are infinitely many primes of the form

a2 + b4. Accordingly, we present a computational algorithm
and verification up to a bound. While explaining heuristics to
verify the conjecture, we introduce ‘Goldbach champions’ in
Sec. IV.

The sequence A is studied in another context. We denote
the largest prime factor of an integer n > 1 by P (n). Pas-
ten [8] recently improved Chowla’s 1934 results, showing
that

P (n2 + 1) ≫ (log log n)2

log log log n
.

Using this notation, we restate |A| = ∞ as

|{n : P (n2 + 1) = n2 + 1}| = ∞ .

If m2 + 1 is prime, we define Am = {a ≤ m :
a2 + 1 is prime} and test Conjecture 1 by looking at the dif-
ferences {m − a : a ∈ Am}. More precisely, if |Am| = n,
we enumerate the elements of Ax as a1, · · · , an = m, where
ai < aj if i < j. We look at the differences an−an−1, an+
−an−2, · · · , an − a1 to confirm that m = ai + aj for some
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1 ≤ i ≤ j ≤ n − 1. We then ask what is the smallest
i ∈ [1, n − 1] such that an − an−i ∈ Am, and how large
i is with respect to m. We denote this smallest value of i by
j(m) and examine it in Sec. IV. In Sec. V, we prove results on
the values of j(x) and the verification process, one of which
is conditional on the Bateman-Horn conjecture and the oth-
ers on Schinzel’s Hypothesis H. Tab. 2 compares champion
values of j(an) to log n.

II. Enumeration of Primes of the Form m2 + 1

Wolf [12] computed the primes p = m2 + 1, for
p < 1020. Wolf and Gerbicz [11] then published a table up
to 1025. We extended their table up to 6.25× 1028.

Our computation uses three sieves, thereby creating three
lists of primes. Let B be the upper bound of our eventual list
of primes p = m2+1, so that p < B. In Wolf’s original arti-
cle, B = 1020. The first step uses the Sieve of Erathosthenes
to generate the primes up to B1/4. Our second list starts as
all positive integers z < B

1
2 , z ≡ 1 (mod 4). We then sieve

using our first list of primes, so our second list becomes the
set of all primes p < B

1
2 , p ≡ 1 (mod 4). We also compute

the roots of −1 modulo p for every prime on the second list,
and store them with said primes.

We now use our second list of primes to perform the third
sieve, on all positive integers x ≤ B1/2. If B > x2 + 1 >

> B
1
2 , then x2 + 1 is prime if and only if x is not a square

root of −1 modulo any of the primes in the second list.
We therefore use the second list of primes, with the accom-
panying list of square roots of −1, to list the primes of the
form m2 + 1.

From [2], p. 121, the number of operations to sieve an
array of length A with the primes up to P is

O(A log logP + P 1/2/ logP ) . (1)

The first summand represents the required sieve updates, and
is mostly determined by the size of the array. The second
term represents the per-prime work to find the sieve starting
location, and depends on the number of primes. For longer
arrays, the first term dominates. For shorter arrays, the sec-
ond does.

First, we consider our algorithm’s computational com-
plexity, assuming the entire sieve array fits into memory.
We see later that our real-world conditions are more com-
plicated, but it makes sense to start off analyzing the triple
sieve’s computational complexity without adding the ex-
tra hardware restrictions. The first sieve (of Eratosthenes)
(up to B1/4) takes O(B1/4 log logB) operations, and the
second sieve (up to B1/2) takes O(B1/2 log logB) op-
erations. Computing the roots of −1 requires computing
2(p−1)/4 mod p for O(B1/2/ logB) primes. Each expo-
nentiation takes O(logB) operations, so the total work
for computing the roots is O(B1/2). Thus the entirety
of the work done before embarking on the third sieve is
O(B1/2 log logB).

The third sieve is somewhat unusual in that both the
sieve array length and the size of the largest prime is about

B1/2. The sieve length is the same as in the second sieve,
potentially surprising some readers. This is because the el-
ements of A are the square roots of one less than the
primes. The number of operations is O(B1/2 log logB +
+B1/4/ logB), which is again O(B1/2 log logB). There-
fore, the overall running time of our triple sieve is
O(B1/2 log logB).

We were ambitious and decided to find all primes p of
the form m2 + 1 with p < 6.25 × 1028 (see Sec. IV). Un-
fortunately, a single sieve with B = 6.25 × 1028 would re-
quire tens of terabytes of memory to store the two arrays for
the second and third sieves, which would be infeasible on
virtually all modern machines. Let M denote the maximum
length of a sieve array that can fit into memory. Then we re-
quire B1/2

M instances of the second and third sieves, and find
ourselves very familiar with our file system.

The second sieve is essentially a Sieve of Eratosthenes.
In the regular Sieve of Eratosthenes, we easily save a factor
of two on memory by skipping even numbers; here we save
a factor of four by also skipping numbers that are 3 mod 4.
We load our length-M section of our sieve array, and then
we sieve by the primes in our first list, i.e., the primes that
are ≤ B1/4. For each of the primes p in our first list, we need
to find where the first multiple of p is in our array of length
M , before we proceed to sieve by p; that is an easy modu-
lar reduction. The totality of these reductions is the second
term in Eq. (1). Once we have finished sieving our array of
length M , we save all of the primes congruent to 1 (mod 4)
that we have found to our second list, and compute the roots
of −1 modulo these new, saved primes. We then clear our
memory and load our next sieve array of length M . Note that
M > B

1
4 , so we do not need to load in our sieving primes;

we only need to load segments of the list that we sieve.
If we use Eq. (1) to determine the time it takes to sieve

all of the B1/2

M instances, we get

O

(
B1/2

M
(M log logB +B1/4/ logB)

)
=

= O(B1/2 log logB +B3/4/(M logB)) .

(2)

The first term in our equation continues to dominate, un-
less the memory available for the sieve area drops to
O( B1/4

logB log logB ). In practice, the sieve area never gets
that small. With our chosen value of B = 6.25 × 1028,

B1/4

logB log logB is less than sixty thousand. A cursory examina-
tion of the constants involved shows that we certainly would
not fill up multi-gigabyte machines.

Implementing the third sieve is trickier. Again, we load
our third sieve’s array of length M . This time we sieve by our
second list of primes, which is much longer than our first list
of primes, and the list of primes that we are sieving by does
not itself fit in our memory. We therefore load the second list
of primes sequentially from a series of files, and sieve from
the loaded list. Note that every prime is loaded once, but this
action is so much smaller than the number of times we sieve
with a given prime that the file loading work is negligible
compared to other work.
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It is also trickier to sieve by any given p in our second list
of primes. We still need to find the first multiple of our prime
p in the array of length M , but we are actually sieving by the
associated roots ±r of −1. For each root ±r, there may exist
some x in our array of length M that is less than the array’s
first multiple of p such that x ≡ ±r. We spend much more
time on the per-prime computations (with respect to sieve
updates) than we did in the second sieve. In total, we do up
to four operations per prime before we start sieving with it.
That is, however, only a constant multiple and does not affect
the asymptotics.

Eq. (1) shows that we lose efficiency when the sieve
array size drops below O( B1/4

logB log logB ) – in other words,
when the number of instances exceeds O(logB log logB).
We used 9000 instances, and as B = 6.25×1028, one would
assume from the given asymptotics that loading our sieve ar-
rays was efficient. We did not, however, do a detailed analy-
sis involving constants, and we suspect we were either near
or past the point at which we lose efficiency. As we did not
have larger-memory machines available to us at the time, we
had no choice but to accept any such loss.

Sample code is available here1.

III. Computational Results

We use Wolf’s notation that πq(x) is the number of
primes of the form m2 + 1 up to x.

As Wolf notes, Hardy and Littlewood’s Conjecture E [6]
gives πq(x) ∼ f(x), where

f(x) = Cq

√
x

log x

and

Cq =
∏
p≥3

(
1− (−1)(p−1)/2

p− 1

)
=

=
∏

p≡1(mod4)

p− 2

p− 1

∏
p≡3(mod4)

p

p− 1
= 1.3728 . . .

More precise heuristics give πq(x) ∼ g(x), with g(x) =

=
Cq

2 li(
√
x). In his Tab. I, Wolf computed the values of

πq(x), f(x), πq(x)/f(x), g(x), and πq(x)/g(x) for x =
= 10a, where a ranges from 6 to 20. Wolf and Gerbicz
[11] then computed the appropriate values for πq(x) when
a ranges from 21 to 25. We repeat and extend their results
in Tab. 1.

IV. Verifying Goldbach’s Other Other Conjecture

We confirmed Goldbach’s other other conjecture up to
6.25 × 1028, i.e., for a up to 2.5 × 1014. The list of primes

takes up more than 30 terabytes on disk – it would be chal-
lenging to search through that whole list for each prime to
find a difference in our set.

Instead, we asked the following naive questions, and
used them to guide our simple verification strategy. Let A be
the set of all a such that a2+1 is prime and let us enumerate
them in order, so A = {an}. The sets Am in the introduction
are truncations of A.

• Is an − an−1 = ai for some i?
• How about an − an−2?
• How far back do you have to go?

To tackle these questions, note that Sec. III’s claim that
πq(x) ∼ Cq

√
x

log x is equivalent to saying an ∼ 2
Cq

n log 2n
Cq

.
Let j(an) be the smallest value of i such that an−an−i =

= ak for some k. We call an a Goldbach champion
if j(ai) < j(an) for all i < n. Tab. 2 contains a list of
all champions for an < 2.5× 1014.

V. Conditional Results About the Growth of j(n)

Popular conjectures about prime values of polynomials
imply interesting patterns in the distribution of the sequence
an.

Conjecture 2. (Schinzel’s Hypothesis H [10]) A set of poly-
nomials fi(x) satisfies the Bunyakovsky condition if there is
no p for which

∏
fi(a) ≡ 0 for all a ∈ Fp. Under this

assumption, the polynomials are simultaneously prime for
infinitely many values of x.

Proposition 1. Assuming Hypothesis H, j(an) > 1 in-
finitely often.

Proof: Let f1(y) = (65y+9)2+1 and f2(y) = (65y+1)2+
+1. Since each polynomial has at most 2 roots, f1(a)f2(a)
cannot be 0 for all a ∈ Fp when p ≥ 5. It is easy to check
f1(a)f2(a) is not always 0 for all a ∈ Fp when p is either
2 or 3. Our set therefore satisfies the Bunyakovsky condition,
and thus the two functions will be simultaneously prime in-
finitely often, assuming Hypothesis H. To see that they are
consecutive primes of the form x2 + 1, look at the interme-
diate values.

(65y + 3)2 + 1 ≡ 0 (mod 5) ,

(65y + 5)2 + 1 ≡ 0 (mod 13) ,

(65y + 7)2 + 1 ≡ 0 (mod 5) .

The difference (65y+9)− (65y+1) = 8 is not in A, so
j(an) > 1 infinitely often.

We can, in fact, prove a much stronger result if we as-
sume the Bateman-Horn Conjecture [1, p. 363].

The Bateman-Horn Conjecture states that the number of
values less than x, for which a set of k polynomials satis-
fying the Bunyakovsky condition is simultaneously prime,
is proportional to x

logk(x)
, and gives the proportionality con-

stant, which we will not use. The Bateman-Horn conjecture
strengthens Hypothesis H.

1 https://github.com/31and8191/Goldbach1

https://github.com/31and8191/Goldbach1
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Tab. 1. Prime counts

x πq(x) πq(x)/f(x) πq(x)/g(x)

101 2 1.06080 1.20841

102 4 1.34181 0.92957

103 10 1.59120 1.07127

104 19 1.27472 0.91567

105 51 1.35252 1.04253

106 112 1.12713 0.91869

107 316 1.17325 0.99440

108 841 1.12847 0.98321

109 2 378 1.13516 1.00888

1010 6 656 1.11639 1.00696

1011 18 822 1.09815 1.00184

1012 54 110 1.08909 1.00258

1013 156 081 1.07621 0.99805

1014 456 362 1.07162 0.99991

1015 1 339 875 1.06601 0.99984

1016 3 954 181 1.06116 0.99974

1017 11 726 896 1.05739 1.00005

1018 34 900 213 1.05367 0.99991

1019 104 248 948 1.05058 0.99997

1020 312 357 934 1.04782 1.00001

1021 938 457 801 1.04529 0.999996

1022 2 826 683 630 1.04305 1.000005

1023 8 533 327 397 1.04100 0.999998

1024 25 814 570 672 1.03915 1.000008

1025 78 239 402 726 1.03746 1.000004

1026 237 542 444 180 1.03590 1.000003

1027 722 354 138 859 1.03447 1.00000003

1028 2 199 894 223 892 1.03315 1.00000019

6.25× 1028 5 342 656 862 803 1.03217 0.99999976

Lemma 1. Given a sequence {yn} of density 0 and a posi-
tive integer k, there exists a set {b0, b1, . . . , bk−1} such that
the bi ̸∈ {yi} and the set of polynomials {fi = (x2 − bi)}
satisfies the Bunyakovsky condition.

Proof: By the Chinese Remainder Theorem, there is
a b such that for each prime p ≤ 2k, b2 + 1 ̸≡ 0 mod p. Be-
cause the set of yi’s has zero density and the numbers equiv-
alent to b modulo all small primes has positive density, we
can choose a set of bi’s congruent to b which avoids the se-
quence {yn}. For primes p ≤ 2k, all of the fi(0) ̸≡ 0 mod-
ulo said primes, and the condition is satisfied. The product

of the fi’s has degree 2k, and therefore cannot be identically
zero modulo any prime p > 2k.

Proposition 2. Assuming the Bateman-Horn Conjecture,

lim sup
n→∞

j(an) = ∞ .

Proof: We demonstrate that for any k, there are infinitely
many an with j(an) ≥ k.

The preceding lemma shows we can form a sequence
b0 = 0, b1, . . . , bk−1 of elements not in A such that the set
{fi(m) = (m− bi)

2 + 1} satisfies the Bunyakovsky condi-
tion.
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Tab. 2. Champion values of j(a)

n an
2
Cq

n log 2n
Cq

j(an)
j(an)
logn

16 74 106 3 1.08

55 384 507 6 1.50

100 860 1 047 7 1.52

173 1 614 2 011 10 1.94

654 7 304 9 429 12 1.85

1 188 14 774 18 618 14 2.00

2 815 37 884 49 220 17 2.14

6 868 103 876 132 962 21 2.38

11 913 191 674 244 421 23 2.45

36 533 651 524 835 598 24 2.28

38 073 681 474 874 125 26 2.47

62 688 1 174 484 1 504 969 38 3.44

480 452 10 564 474 13 590 903 44 3.63

837 840 19 164 094 24 679 882 48 3.52

1 286 852 30 294 044 39 066 897 52 3.70

10 451 620 279 973 066 363 307 290 56 3.46

25 218 976 709 924 604 923 322 569 58 3.40

68 826 857 2 043 908 624 2 665 142 759 64 3.55

79 601 233 2 381 625 424 3 106 685 030 65 3.57

157 044 000 4 862 417 304 6 353 414 906 69 3.66

266 774 400 8 476 270 536 11 089 804 641 70 3.61

337 231 328 10 835 743 444 14 184 814 636 71 3.62

1 702 595 832 58 917 940 844 77 409 688 313 83 3.90

2 524 491 445 88 874 251 714 116 867 691 886 90 4.16

3 079 006 270 109 327 832 464 143 823 180 284 105 4.81

63 281 910 377 2 537 400 897 706 3 358 032 936 033 125 5.03

Assuming the Bateman-Horn conjecture, there are
asymptotically c x

logk(x)
values of m less than x, c > 0,

where all of the polynomials take prime values. If there
are no other values d, where 0 < d < bk−1, such that
(m− d)2 + 1 is prime, then we have that j(m) ≥ k.

Assume that there are only finitely many m such that
there exist no other described d. Then for all but finitely
many m, (m − d)2 + 1 is prime for at least one d, with
0 < d < bk−1, that is not equal to any of the bi. By the
pigeonhole principle, at least one of the potential d’s cre-
ates a (k + 1)-st polynomial fx+1(m) = (x− d)2 + 1 such
that there are asymptotically c′ y

log2 y
values of m less than y,

with c′ > 0, such that f1(m), f2(m), . . . , fk+1(m) are all
simultaneously prime. That contradicts the Bateman-Horn
conjecture, which says that the set {fi, (m − d)2 + 1} can
have asymptotic count at most c′′ y

logk+1(y)
for some c′′ > 0.

Therefore there exist infinitely many m such that j(m) ≥ k.
Our choice of k was arbitrary, so lim supn→∞ j(an) = ∞.

Proposition 3. Assuming Hypothesis H,

lim inf
n→∞

j(an) = 1 .

Proof: Consider the polynomials x2 + 1 and (x− 2)2 + 1.
By the above lemma, they satisfy the Bunyakovsky condi-
tion. By Hypothesis H, there are infinitely many ai with both
a2i +1 and (ai−2)2+1 prime. Because (ai−1)2+1 must be
even, ai−1 = ai − 2, and ai − ai−1 = 2, which is a member
of our set A.

In particular, this shows that Goldbach’s other other con-
jecture is true infinitely often.
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VI. Further Work

In a follow-up paper, we generalize Goldbach’s other
other conjecture to cyclotomic polynomials other than
Φ4(x) = x2 + 1. We thank Michael Filaseta for noting that
Goldbach’s other other conjecture is equally plausible when
looking at representations of all positive integers, not just
primes. Our forthcoming paper also explores that intriguing
path.

We did not further explore the function j(an). While
it looks like j(an) grows infinitely large, we do not have
a growth result for j(an). Arithmetic statisticians may want
to explore the ‘expected value of j(an)’. Hypothesis H im-
plies that j(an) is one infinitely often, but there may be
a nice formula approximating j(an) most of the time.
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