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Abstract: Two-temperature pedagogical cell models, extensions of the equilibrium Einstein model of solid state physics,
can allow nonequilibrium hot-to-cold heat transfer. These heat-flow models can be driven by thermostatted temperature
differences, for instance between horizontal and vertical degrees of freedom. We present pedagogical benchmark Lyapunov
exponents for four equilibrium cell models: isoenergetic Hamiltonian, constrained Isokinetic, and two Isothermal Nosé-
Hoover models. We also compute representative Lyapunov exponents for two members of a family of two-temperature
dissipative Nosé-Hoover cell models. Further exploration of such dissipative models is the subject of the 2024–2025 $1000
Snook Prize.
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I. Molecular Dynamics and Equilibrium Cell Models

Berni Alder and Tom Wainwright developed molecular
dynamics at the University of California’s Livermore Ra-
diation Laboratory in the 1950s [1]. They began with hard
disks and hard spheres, making connections with the Boltz-
mann equation for dilute gases, dense-fluid/solid cell models
of Gibbs’ thermodynamics, and the melting/freezing transi-
tion of dense fluids and crystalline solids. The two different
two-body cell models illustrated in Fig. 1 are related to the
Einstein and Debye models (dating back to 1907 and 1912,
respectively) for equilibrium solid state frequency distribu-
tions. The models turn out to closely reproduce the isother-
mal pressure-volume dependence for the hard-disk melt-
ing/freezing phase transition [2]. These results took advan-
tage of the simplicity of instantaneous hard-particle colli-
sions obtained with the aid of classical Newtonian dynam-
ics. For more “realistic” pair interactions the equations of
state linking pressure P , volume V , energy E, and temper-
ature T could be obtained as applications of the virial the-
orem’s linking of microscopic collisions to the macroscopic
pressure.

Away from equilibrium the shear and bulk viscosities
and thermal conductivity were formulated as theoretically
based “transport coefficients” derived from Boltzmann’s ki-
netic theory or Green and Kubo’s linear-response theory.
Gibbs’ statistical mechanics relates thermodynamic proper-
ties to derivatives of the “free energies”, Helmholtz’ A(V, T )
and Gibbs’ G(P, T ), obtained by integrating phase-space
probabilities over N -body spaces in the limit where N is
macroscopic.

In the opposite few-body limit, where a single particle
moves at constant energy in a potential field due to its fixed
neighbors, Gibbs’ or Helmholtz’ many-body phase integral
can be approximated by the N th power of a one-body in-
tegral. Two one-body examples are illustrated in the “cell
model(s)” of Fig. 1. It is remarkable that this simple idea can
be usefully extended to provide an even more nearly accurate
model, the correlated cell model. That model [2] incorpo-
rates the sliding of rows of particles seen earlier in computer-
generated movies. In the correlated cell model melting oc-
curs as a consequence of sufficient area expansion (to 4/3
the close-packed area) to allow parallel rows of particles to
shear past their neighbors.
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Fig. 1. Equilibrium Cell Models (on the left) and Pressure-Area Isotherms (on the right) for Hard Disks. On the left (the center of) a central
“wandering” hard-disk particle can explore the tiny hexagonal shaded area as the wanderer interacts with six fixed neighbors in the ordinary
cell model. In the correlated cell model only the four darkly shaded particles bound the central particle’s motion. In this correlated model
the leftmost and rightmost disks act as moving periodic images of the central open-circle particle. Pressures in the figure are calculated
from both cell models, manybody molecular dynamics, and the inverse 100th power potential using Gibbs’ statistical mechanics, as is

described in Ref. 2

II. Isoenergetic Mechanics at Constant Total Energy

The present work was inspired by the cell-model exam-
ples of Fig. 1. We intend the numerical results in the eight
figures that follow here to serve as benchmarks for those de-

Fig. 2. Hamiltonian mechanics with initial conditions
(x, y, px, py) = (0, 0, 0.6, 0.8) and one million fourth-order
Runge-Kutta timesteps, (dt = 0.001). The wanderer particle inter-
acts with four particles fixed at (x, y) = (±1,±1). The interaction
potential with the four fixed particles is ϕ = (1 − r2)4 for r < 1

and vanishes outside that range

veloping computer simulations using straightforward Hamil-
tonian mechanics or its more recent Isokinetic and Nosé-
Hoover modifications with thermostat forces added to the
motion equations. Fig. 2 serves as an excellent pedagogical
example, with plenty of fine structures in the relatively long-
time trajectory shown there. With a correctly programmed
solution using a fourth-order Runge-Kutta integrator the
reader should have little difficulty duplicating the million-
timestep trajectory shown as Fig. 2.

Although there are many integrators ranging from sec-
ond order to eighth order, or even more, we settled on
the simplicity of the fourth-order Runge-Kutta after con-
siderable exploration of many alternatives. Fig. 3 furnish-
es an illuminating example. For clarity it compares inte-
grations using four values of the Runge-Kutta timestep,
0.001, 0.002, 0.005, and 0.010. The underlying cell model is
the same as that shown in Figs. 1 and 2: a wanderer particle
moves in a 2 × 2 square, interacting with four fixed parti-
cles at (x, y) = (±1,±1) with the smooth short-ranged pair
potential ϕ(r) = (1− r2)4.

III. Extensions of Hamiltonian Mechanics

Nosé’s 1984 work [3, 4] revolutionized Isoenergetic
molecular dynamics and helped create nonequilibrium
molecular dynamics. “Isokinetic” mechanics constrains the
kinetic energy, (p2x + p2y)/2. A straightforward application
of Gauss’ Principle (of “Least Constraint”) leads to new mo-
tion equations. Choosing the mass and relaxation time of the
constraint forces equal to unity, the Isokinetic condition is
built into the motion equations:

ṗ = F − ζp ; ζ = (F · p)/(p · p) [Gaussian Isokinetic].
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The “Nosé-Hoover” version of Nosé’s work [5] also follows
this friction-coefficient form, but with a separate differential
equation for the coefficient ζ:

ṗ = F − ζp ; ζ̇ = (p2 − T )/τ [Nosé-Hoover Isothermal].

A similar version, which we also explore here, controls p2x
and p2y separately, with two friction coefficients, ζx and ζy .

To sum up, we consider the Hamiltonian and Isoki-
netic models with four motion equations plus two additional
Nosé-Hoover models, with five and six motion equations,
with the two-coefficient model applicable both at equilib-
rium, with two equal temperatures, and at nonequilibrium,
where the two temperatures differ and drive a hot-to-cold
heat flux.

The last nonequilibrium case provides an example
of irreversible flows from reversible motion equations.
We choose to study the pedagogical Lyapunov spectrum of
dynamical λ stability coefficients to benchmark all of these
models, describing them in the next section.

Fig. 3. Four wanderer-particle trajectories with dt = 0.001 (top
left), 0.002 (top right) , 0.005 (bottom left), 0.010 (bottom right)
emphasizing points at times of 10 (purple), 20 (green), 30 (blue), 40
(gold) with periodic boundaries in the x and y directions. The initial
condition is p = (0.6, 0.8) with (x, y) = (0, 0). The total energy
agrees with the initial to eleven-figure accuracy at the conclusion
of the run, time = 50. Despite this accurate energy the trajectories
differ markedly at time 40. The maximum potential energy of 1/2
occurs along four quarter-circles centered at (±1,±1) with radii
0.398878 =

√
1− 2−1 /4. In the figure, for comparison purposes

the top row of trajectories are displaced by (∓1.1,+1.1) and the
bottom row by (∓1.1,−1.1) Each of the four trajectories was gen-
erated for a maximum time of 50. Visually, the four purple and
green trajectories agree, unlike the blue (0.005) and gold (0.010)

points at times 30 and 40

IV. Lyapunov Spectra
for Three Equilibrium Cell Models

In this work we augment standard isoenergetic Hamilto-
nian simulations with Isokinetic as well as two equilibrium
and nonequilibrium versions of Nosé-Hoover isothermal me-
chanics. We focus on the Lyapunov spectrum to characterize
all four of these cell-model types(Hamiltonian, Isokinetic,
and two versions of Nosé-Hoover dynamics).

We use fourth-order Runge-Kutta integration for all of
the problems in this work. Experimentation with various
timesteps and fifth-order methods [6] shows that a fourth-
order solution with time steps 0.001 or 0.002 provides reli-
able numerical data. Larger timesteps, 0.005 or 0.010, pro-
vide inaccuracy, as indicated by the gold disks of Fig. 3,
which was carried out to a maximum time of 50.

Around 1980, with the new tool of nonequilibrium
molecular dynamics, it was discovered that time-reversible,
but dissipative, simulations (with gradients in density, ve-
locity, or temperature) lead to fractional dimensional “frac-
tal” phase-space distributions [7, 8]. The time-reversed sim-
ulations turned out to be “unstable”. The instability can
be best characterized with the Lypunov spectrum of ex-
ponents, which describe the expansion/unstable or contrac-
tion/stable of phase-space distributions, one for each di-
mension. The spectra for Hamiltonian mechanics are com-
posed of equal numbers and magnitudes of Lyapunov ex-
ponents, {±λ} corresponding to Liouville’s Theorem that
classical time-reversible mechanics conserves phase-space
volume. Numerical algorithms for the spectrum are based
on the exponential growth or decay rates of n-dimensional
phase-space volumes, starting with the growth of a line

Fig. 4. Longer calculations of the four Hamiltonian Lyapunov ex-
ponents with dt = 0.001 (purple), 0.002 (green) and 0.005 (blue).
Here the initial conditions in the four-dimensional phase space are

(x, y, px, py) = (0, 0, 0.6, 0.8)
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segment, as eλ1t, of an area, as e[λ1+λ2]t, and of a vol-
ume, as e[λ1+λ2+λ3]t. The Hamiltonian cell model has four
Lyapunov exponents as the motion takes place in a four-
dimensional space, (x, y, px, py).

Fig. 4 illustrates the two larger Lyapunov exponents for
the continuous Hamiltonian cell model of Figs. 2 and 3,
carried out to a time of 200 with Runge-Kutta integration.
The good agreement between the two smaller timesteps,
0.001 and 0.002, indicates that either choice is satisfactory.
Shimada and Nagashima [9], as well as Benetinne’s group
[10], developed algorithms well-suited to the computation of
Lypunov exponents, with λ1 above and λ2 below, as shown
in Fig. 4. See also our work with several colleagues and stu-
dents [11–13].

Fig. 5 shows the four Isokinetic exponents, one posi-
tive and paired with a negative and two vanishing, likewise
paired. In every case the initial values for the coordinates and
momenta are {x, y, px, py} = {0, 0, 0.6, 0.8}. Because the
forces vanish with the wanderer particle, at or nearby the ori-
gin, the initial friction coefficient or coefficients vanish. Just
as in the Hamiltonian case the exponents ±λ are paired, ±λ
indicating the lack of any long-term phase-volume change.
The Nosé-Hoover motion equations come in two varieties,
with five-and-six-dimensional phase spaces:

ζ̇ = (p2 − T )/τ [Single Thermostat],

Fig. 5. Four Isokinetic Lyapunov Exponents with dt = 0.001 (pur-
ple), 0.002 (green), and 0.005 (blue). As usual, the initial condition
sets the wanderer at the origin with kinetic energy (p2x + p2y)/2 =
= (0.36 + 0.64)/2 = 0.50, nicely conserved and suggesting
that the largest Lyapunov exponent is λ1 = 0.39 ± 0.01 and the
smallest, λ4 = −0.39 while λ2 and λ3 both vanish. The mo-
tion equations are (ẋ, ẏ, ṗx, ṗy) = (px, py, Fx − ζpx, Fy − ζpy).
The friction coefficient ζ is (F · p)/(p2x + p2y) and the initial con-
ditions are the usual, (x, y, px, py, ζ) = (0, 0, 0.6, 0.8, 0), solved
with fourth-order Runge-Kutta integration with up to two hundred

thousand points

ζ̇x = (p2x − T )/τ ; ζ̇y = (p2y − T )/τ [Double Thermostats].

The cumulative Lyapunov spectra are illustrated in
Figs. 6 and 7.

The present work was undertaken with the goal of bet-
ter understanding the distributions obtained with nonequilib-
rium versions of the dynamics. A 1991 precursor [12] con-
sidered the heat transfer between the horizontal and verti-
cal kinetic temperatures of an anisotropic harmonic oscilla-
tor with two friction coefficients, ζx and ζy , and a different
angle-dependent pair potential, expressed here in polar coor-
dinates:

ϕ = (r2/2)[1 + 0.5 cos(3θ)] ;

ṗx = Fx − ζxpx ; ṗy = Fy − ζypy ;

ζ̇x = (p2x − Tx)/τ ; ζ̇y = (p2y − Ty)/τ,

chosen for its resemblance to the Hénon-Heiles system. This
model, with Tx = 2 and Ty = 1/2 has a six-dimensional
Lyapunov spectrum {0.117, 0.043, 0.001, −0.008, −0.067,
−0.200}, indicating a phase-space distribution dimension-
ality between 5 (growing as e+0.086t) and 6 (shrinking as
e−0.114t) based on the sums of five and six exponents. Ex-
changing the two temperatures gives {0.031, 0.001, −0.005,
−0.043, −0.128, −0.216} corresponding to a dimension-

Fig. 6. Four Nosé-Hoover Lyapunov Exponents, ±0.50,±0.11, are
paired with their negatives. There is also a single vanishing expo-
nent. The calculations are compared with dt = 0.001 (purple),
0.002 (green), and 0.005 (blue). The Lyapunov data suggest that
the largest Lyapunov exponent is λ1 = 0.50 ± 0.01. The mo-
tion equations are (ẋ, ẏ, ṗx, ṗy, ζ̇) = (px, py, Fx − ζpx, Fy +
−ζpy, [ p2x + p2y − 2T ]/τ). The target temperature T and relax-
ation time τ are both unity. Again the initial conditions place the
wanderer at the origin with (px = 0.6, py = 0.8, ζ = 0). ζ̇ =
= [ p2x + p2y ]/2τ −K. The friction coefficient ζ is determined by
this last feedback equation for ζ̇. As usual, the motion equations are

solved with fourth-order Runge-Kutta integration
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Fig. 7. Here the two Nosé-Hoover momenta are separately con-
trolled with target temperatures T of unity: ṗx = Fx−ζxpx ; ṗy =

= Fy − ζypy with ζ̇x = p2x − T ; ζ̇y = p2y − T . The six motion
equations are those of Fig. 6 but with ζx and ζy both initialized
at zero, px, py = 0.6, 0.8. Just as in the Hamiltonian case this
Nosé-Hoover equilibrium system generates a symmetric Lyapunov
spectrum with two positive-negative pairs of exponents. There are

also two zero exponents

ality between 3 (growing as e0.027t) and 4 (shrinking as
e−0.016t).

The complexity of additional manybody thermostatted
systems was explored using Nosé-Hoover mechanics in
1993 [13]. Qualitative differences between six-body and
eight-body anharmonic chains (with half cold and half hot)
could be characterized with special attention to constraints
on the satellite trajectories required for the computation of
Lyapunov spectra.

Our goal in the present work is to better understand a cell
model based on the simple pair potential ϕ(r) = (1 − r2)4

which we used earlier [6] to evaluate the relative usefulness
of seven integrators of the four ordinary differential equa-
tions for (ẋ, ẏ, ṗx, ṗy). A sample million-timestep equilib-
rium dynamics, with energy E = 0.5 was pictured here in
Fig. 2.

The Hamiltonian cell-model dynamics is described with
four differential equations. Exploration shows that fourth-
order Runge-Kutta integrators provide stability, and despite
Lyapunov instability, visual trajectory accuracy to a time
of 20 or 30 with timesteps of 0.001, 0.002, and 0.005.
See Figs. 3 and 4, where the filled disks in Fig. 3 show that
the Lyapunov instability degrades solutions with dt > 0.002.

V. Summary

Cell models replace the manybody problem [6, 14, 15]
with a one-body problem. Despite this simplicity the various
approaches we have outlined, augmenting the Hamiltonion

Fig. 8. Unlike all the previous cell-model simulations the horizon-
tal and vertical temperatures here are controlled differently, at 2 and
1/2, respectively. Initially px, py = 0.6, 0.8. This nonequilibrium,
but “time-reversible”, system takes advantage of the opportunity to
transfer heat from hot to cold, giving a negative sum of the six ex-

ponents equal to −0.026:
+0.309 + 0.128 + 0.020 + 0.006− 0.122− 0.367 = −0.026.

Lyapunov instability separates the timestep dependence visually
around a time of 60. Permuting the temperatures from 2 and 1/2

to 1/2 and 2 provides a similar spectrum and a smaller sum:
+0.312 + 0.112 + 0.008− 0.014− 0.109− 0.317 = −0.008.

Initially px = 0.6, py = 0.8. More extensive computations sug-
gest that the uncertainties of the exponents for runs to time 200
are roughly ±0.01. Evidently, these results are consistent with the
extended phase-space distribution being fractal rather than con-
tinuous. Because the last Lyapunov exponent is λ6 = −0.367
the dimensionality loss from 6 is 0.026/0.367 ≃ 0.070 accord-
ing to Kaplan and Yorke’s interpolation recipe [14]. The permuted
temperatures also give a tiny estimate for the dimensionality loss,
0.008/0.317 ≃ 0.025. It is noteworthy that even this simple one-
particle model reproduces the symmetry breaking associated with
the Second Law of Thermodynamics. Despite the time-reversibility
of the motion equations any numerical solution soon follows in the
direction of dissipation. A time-reversed simulation, with a posi-
tive Lyapunov sum, is numerically unstable. Whether or not the
six-dimensional phase-space distribution is ergodic is an interest-
ing subject worthy of investigation. If it is, permuting the mo-
menta and the temperatures (four combinations of initial condi-
tions) should lead to four similar spectra, the first step in applying
for the Snook Prize of 2025. We compared the four runs with 200
million timesteps and found that the cumulative largest Lyapunov
exponents were all the same to three figures, ⟨λ1 ≃ 0.293⟩, sug-
gesting that the dynamical distribution is ergodic. More details, in
the form of a Snook Prize entry, of the temperature dependence of

the spectra, are very welcome

description with isokinetic and Nosé-Hoover versions of
thermostatting provide pedagogical models for equilibrium
and nonequilibrium dynamical systems. The programming
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implementing the computation of Lyapunov spectra is some-
what tedious. Carrying out the present work we finally lo-
cated an error in our version of the Gram-Schmidt algorithm.
Finding and correcting this occupied us off and on for two
months, culminating with success on Christmas Day 2024.
A rough draft manuscript was first submitted to CMST on
New Year’ Eve 2024, a week later.

Fig. 9. A longer run, with as many as ten million timesteps (dt =
= 0.001), suggests that visual convergence of the spectrum is com-
plete at a time of a few thousand, a few million timesteps. Here
the horizontal and vertical temperatures are controlled differently,
at 1/2 and 2, respectively, with the temperatures permuted from
those in Fig. 8. Evidently, there are two positive, two negative,
and two vanishing exponents in these nonequilibrium problems.
Permuting the initial momenta from (0.6, 0.8) to (0.8, 0.6) gener-
ates similar three-figure-averaged spectra for ten million timesteps,
[0.292, 0.115, 0.005, −0.005, −0.116, −0.314]. Here, initially

px = 0.8, py = 0.6

VI. Snook Prize 2024–2025

We wish to offer the Snook Prize of $1000 for the most
interesting exploration and description of the nonequilibrium
two-temperature cell model treatments obtained from exten-
sions of Fig. 8. In particular, we would appreciate readers’
efforts to understand the systematic dependence of the Lya-
punov spectrum and fractal dimension on the magnitudes
and differences of Tx and Ty . Entries should be submitted
directly to CMST with referees selecting the winning contri-
bution.
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