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∗E-mail: narojczyk@ifmpan.poznan.pl

2 President Stanisław Wojciechowski University of Kalisz
Polytechnic Faculty
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Abstract: In this work, the recent studies on hard particle systems containing nanolayer inclusions are extended. Earlier
studies showed that systems with nanolayer inclusion can be used to coarse- or fine-tune the auxetic properties of cubic
crystals. Here, the impact of spatial distribution of individual inclusion layers on elastic properties of hard sphere crystal of
cubic symmetry has been investigated by numerical simulations. The Monte Carlo method with Parinello-Rahman approach
in NpT ensemble has been used to evaluate the elastic constants and Poisson’s ratios for six different systems, each
containing three nanolayers parallel to each other and orthogonal to [001]-direction. The obtained results are compared
with reference systems studied earlier. The studies have been performed for selected thermodynamic conditions. It has been
shown that elastic properties weakly depend on the distribution of the inclusions within the structure if the inclusions are
not formed by neighbouring layers. Some distributions of the inclusion layers change the period of the structure, which
indicates that this factor does not have a big impact on the elastic properties. It is worth stressing that in a particular case the
Poisson’s ratio has been found to reach negative values in the [111][11̄0]-directions which are not auxetic in cubic crystals.
Key words: auxetics, negative Poisson’s ratio, nanolayers, hard spheres, nanoinclusions, Monte Carlo simulations

I. Introduction

When searching for a solution to a problem involving
elastic properties of materials, one may often need materials
with properties tailored for that particular problem. Unfortu-
nately, to date, our ability to produce new materials upon re-
quest from the industry has been rather limited. The process
is usually costly and time-consuming. The reason for this is
that despite being one of the longest studied area of science,
elastic properties of materials are far from being fully under-
stood. The latter originate from interactions and phenomena
that occur at the atomic level and despite our significant ad-
vancements in studying the world at nano-level, there is still
a lot to be uncovered and understood. For this reason, it is
important to study model crystalline structures, as they are
the simplest systems describing the matter around us.

Poisson’s ratio (PR) [1] is a common physical quantity
that comes to mind when talking about elasticity of a mate-
rial. In the simplest case, it describes how a particular mate-
rial, subjected to longitudinal stretching load, elongates rel-
atively to its transverse shrinkage. That was the case up to
forty years ago, when people started to pay closer attention
to systems for which PR could become negative. Within the
scope of the above crude definition, it meant that the ma-
terial could expand its transverse dimensions while being
longitudinally stretched and, vice versa, transverse shrink-
age could be observed under a longitudinal compression.
The first mechanical models that exhibited such counter-
intuitive behaviour were proposed in mid 1980s, indepen-
dently by Almgreen [2] and Kolpakov [3]. Soon after the first
man-made material exhibiting negative Poisson’s ratio was
made by Lakes [4] in late 1980s. In the same time, the first
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thermodynamically stable model of a twodimensional elas-
tically isotropic crystalline structure that showed negative
Poisson’s ratio was found [5] and rigorously solved [6] in
the late 1980s by Wojciechowski. The work was later contin-
ued in [7, 8]. Auxetics [9], as negative Poisson’s ratio materi-
als are usually called today, due to the peculiar deformation
mechanism, exhibit a number of characteristics that are use-
ful from the point of view of practical applications [10–12],
like enhanced stiffness, higher indentation resistance, frac-
ture toughness, higher shear moduli and higher thermal im-
pact resistance [11, 13], and others. Some materials can ex-
hibit negative PR in some directions and positive or zero PR
in others. Such materials were coined partial auxetics [14].

Since the discovery of negative Poisson’s ratio materi-
als, the intense studies [10, 12, 15–17] resulted in auxetic
polymers [18, 19], composites [20, 21], and foams [22–25].
Auxetic properties have been also found or incorporated into
nonwoven materials [26, 27] and fabrics [28–31]. Practical
applications of these unusual properties of the new materi-
als, although scarce, have been proposed to furniture indus-
try [32, 33], medical sector [34–36] and others [37]. There is
an abundance of ideas for practical applications of auxetics.
However, obtaining an auxetic material is still not a trivial
endeavour. In the late 1990s, Baughman et al. [38] explained
the nature of auxetic properties found in cubic crystals. They
showed that around 68% of cubic metals exhibit auxetic
properties in some (narrow) range of crystallographic direc-
tions. This opened a possibility to enhance the already ex-
isting partial auxetic characteristics of materials instead of
coping with a tedious process of designing new auxetics.

With the help of computer simulations, such studies can
be performed relatively cheaply and efficiently. Using large
supercomputers, one can study models of crystals and test
modifications that could potentially lead to enhancement of
the auxetic properties. To date, a number of such modifi-
cations introduced to crystalline structure have been stud-
ied [39–41]. It has been shown that introducing inclusions in
the form of nanochannels [42, 43] not only can significantly
decrease the values of the Poisson’s ratio in the directions for
which it is already negative, but also can induce new auxetic
directions. The number of possible modifications that can be
introduced into the crystals is limited only by our creativity.
However, different modifications will exert different, some-
times unexpected results. While the mentioned nanochannel
inclusions [43] significantly enhance auxeticity of the f.c.c.
cubic crystal, an inclusion in the form of single nanolayer
had only slightly decreased the Poisson’s ratio of this crys-
tal [44]. Moreover, the combined nanochannel nanolayer in-
clusion proved to entirely remove this inherent feature of cu-
bic crystals, which are partial auxetic properties [45]. This
shows that modifying a crystal structure in order to obtain
required elastic properties, however effective, is not a simple
task and requires further studies to get a broader understand-
ing of how microscopic processes impact macroscopic prop-
erties. The most recent studies showed that such nanolay-
ered systems (depending on the number of nanolayers in-
troduced) can be used to coarse- [46] or fine-tune [47] the
auxetic properties of cubic crystals. In this work, the studies
of systems with nanolayer inclusions are further extended to

investigate how the spatial ordering of individual nanolayers
will impact elastic properties of the model. This subject is
timely and relevant, as the recent advancements in nanotech-
nology will allow, possibly in the near future, the creation of
such systems [48].

The article has the following structure. In Sec. II, the
studied model is described. In Sec. III, elementary infor-
mation about research methodology is provided. Sec. IV
presents the results and their discussion. The summary and
conclusions are placed in Sec. V.

II. The Model

In this work, models of hard spheres are considered.
The spheres interact with a purely geometrical interaction
that can be described in the following form:

uij

kBT
=

{
∞, rij < σij ,

0, rij ≥ σij ,
(1)

where rij is the distance between the centres of spheres
i and j, σij = (σi + σj)/2, σi, and σj are the diameters
of spheres i and j. The hard sphere (HS) potential is a very
simple but non-trivial interaction. It very well mimics short-
range correlations that originate from the excluded volume
effects [49–51]. For this reason, it and its generalizations
to non-spherical particles constitute one of the fundamental
interactions used in the condensed matter physics [50] and
theory of liquids [52]. Despite its simplicity, the hard sphere
system exhibits melting and auxeticity. Thus, it can be used
to study auxetic properties, as the f.c.c. hard sphere crystal is
partially auxetic [53].

The models considered in this article are based on the
f.c.c. crystals of N hard spheres, each with the diameter of
σ. The crystal has been modified by the replacement of some
of the spheres (Ninc < N ) with spheres of another diameter
σ′ ̸= σ. The replaced spheres can be thought of as an inclu-
sion of different particles into the matrix crystal. In general,
there are many possible ways to arrange this replacement.
In this article, we have focused on arranging these inclusions
in the form of (001)-layers orthogonal to [001]-direction.
In each of the studied models, three layers are selected to
constitute the inclusions in the unit supercell formed by
6 × 6 × 6 unit cells. This indicates that Ninc = 3 · 2xy
and the ratio c = Ninc/N , regarded as the concentration
of inclusion particles, is equal to 3/(2z), where x, y, and
z are the number of f.c.c. unit cells in the respective direc-
tions. The primary (non-inclusion) spheres will be referred
to as the matrix spheres. The changes of the elastic proper-
ties of proposed models have been studied with respect to
different values of inclusion sphere diameters, thus the scal-
ing factor s = σ′/σ is introduced. The systems have been
studied under different thermodynamic conditions, i.e. dif-
ferent values of the reduced pressure, defined as p∗ = βσ3p,
where β = (kBT )

−1 and p is the pressure. The models have
been considered in periodic boundary conditions. Thus, ef-
fectively one obtains systems with periodic stacks of parallel
inclusion layers. For model samples where z > 4, there is an
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Fig. 1. Visualization of studied systems containing three inclusion layers orthogonal to [001]-direction. The presented systems contain
a single layer of matrix crystal between the first and second inclusion layer, and vary in the number of matrix layers between the second
and third inclusion layer. The bottom part presents these systems in periodic boundary conditions (part of the periodic images has been

removed to facilitate the view)

increasing number of possibilities how the three inclusion
layers can be distributed along the z axis. In previous stud-
ies [46], the increasing number of inclusion layers within
the sample, as well as the decrease of the period of the struc-
ture, were the two main factors, whose impact on the elas-
tic properties has been investigated. The concentration c of
those systems changed from 1/6 to 1/2. Here, for the fixed
c = 1/4 the impact of different ordering of inclusion layer

along with the fixed period of the structure, on elastic prop-
erties (and in particular the Poisson’s ratio) is being investi-
gated. In [46] two categories of structures were considered,
one where the inclusions occupied the neighbouring crystal-
lographic layers (NL system) and the second, where the in-
clusion layers have been separated (SL) by a number of lay-
ers of matrix particles. Here we consider another two sets of
models, which are variants of the SL systems. Namely, when
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the two out of three inclusion layers are separated by one
(category 1) or by two (category 2) matrix layers. The third
inclusion layer is distanced from the former two by vary-
ing number of matrix layers, thus forming four different sys-
tems of category 1 and two different systems from category
2. Since the considered models are based on SL3 system
from [46], they will be referenced respectively as SL3-1X
and SL3-2Y , where X =A, B, C, D and Y =A, B. These
six models cover all non-equivalent inclusion layer ordering
for systems in which (i) all inclusion layers are separated, (ii)
two of the inclusions are separated either by one or two ma-
trix layers and (iii) z = 6 f.c.c. cells. The volume of space
occupied by each model is designated by a parallelepiped
described by the matrix h. A symmetric matrix, defined by
vectors that constitute the edges of the parallelepiped. This
matrix will be further referenced to as the box matrix. Visu-
alization of studied systems is presented in Figs. 1 and 2.

III. The Method

The free enthalpy change that corresponds to a thermo-
dynamically reversible system that is subjected to an external
pressure p can be expressed in the following form [49]:

∆G =
Vp

2

3∑
ijkl

Bijklεijεkl, (2)

where Bijkl are the components of the fourth rank elastic
tensor of elastic constants, εij are the components of the La-
grange strain tensor, Vp is the volume of the system at equi-
librium at pressure p, and i, j, k, l correspond to x, y, z.

To calculate elastic properties for the described mod-
els, the Monte Carlo (MC) computer simulations based on
the concept by Parrinello and Rahman [54, 55] were used.
The simulations were performed in the isobaric-isothermal
ensemble (NpT ) [7, 49], i.e. for a fixed number of particles,
and under constant pressure and temperature. The choice of
the method was governed by the fact that it gives the pos-
sibility to calculate the complete elastic compliance tensor
of components Sαβγδ . The 21 independent components of
the fourth-rank tensor Sαβγδ are obtained from the shape
fluctuations of the periodic box, which can be directly ob-
tained from the strain tensor ε – a second-rank, symmet-
ric tensor. For a system under the pressure p, this relation
reads [49, 55]:

ε =
1

2

(
h−1
p .h.h.h−1

p − I
)
. (3)

Fig. 2. Visualization of studied systems containing three inclusion layers oriented orthogonally to [001]-direction. The presented systems
contain a double layer of matrix crystal between the first and second inclusion layer, and vary in the number of matrix layers between the
second and third inclusion layer. The bottom part presents these systems in periodic boundary conditions (part of the periodic images has

been removed to facilitate the view)
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Fig. 3. The elements of the box matrix h for studied models, composed over the data for reference models studied in [46], arranged in
columns for both studied values of pressure. In the row a) the diagonal box matrix elements are presented. In the row b) the ratio of the

off-diagonal elements and h11, scaled by 105

For simplicity, in the calculations we use the reduced pres-
sure defined as p∗ = pβσ3. In eq. (3), I is the unit matrix
of the dimensionality three and hp ≡ ⟨h⟩ is the reference
box matrix, i.e., the average box matrix at equilibrium under
(dimensionless) pressure p∗. One of the many advantages of
this approach is the ability of the system to optimize its shape
under arbitrarily applied thermodynamic conditions. More-
over, the symmetry of the box matrix allows one to avoid de-
formations that would result only in rotation of the system.
The latter are irrelevant to the calculation of elastic proper-
ties. The expression that allows one for computing compo-
nents of the elastic compliance tensor Sαβγδ from the elastic
strain tensor has the following form [49]:

Sαβγδ = βVp ⟨∆εαβ∆εγδ⟩ , (4)

where Vp = |det(hp)| is the average volume of the system at
equilibrium, under pressure p∗, ∆εαβ = εαβ − ⟨εαβ⟩, and
⟨εαβ⟩ is the ensemble average. The Greek indices α, β, γ, δ
indicate directions x, y, z in the Cartesian coordinate system.
The elastic constants tensor components Bijkl are related to
the elastic compliance tensor components Sijkl by the equa-
tion [56]:∑

n,m

SijmnBmnkl =
1

2
(δikδjl + δilδjk) , (5)

where δij is the Kronecker delta. The general relation be-
tween the components Sαβγδ of the elastic compliance ten-
sor and the Poisson’s ratio can be expressed in the following
form [57]:

νnm = −mαmβSαβγδnγnδ

nζnηSζηκλnκnλ
. (6)

This formula allows one to calculate the Poisson’s ratio for
any pair of mutually orthogonal directions n⃗ and m⃗ which,
respectively, are the loading direction and the transverse di-
rection of PR measurement. The ni and mj are their respec-
tive direction cosines. It should be noted that the Einstein
summation convention is used on Greek indexes and, for the
sake of clarity, in the remaining part of the manuscript we
express the Sαβγδ tensor elements with the elastic compli-
ance matrix Sij elements using the Voigt representation [58].
The same holds for the components of the elastic constants
tensor Bαβγδ . The Latin indices for the Sij and Bij ele-
ments of those symmetric square matrices take the values
i, j = 1, ..., 6. As a final remark, it should be stressed that
the approach, to calculate elastic properties, described here
concerns infinitesimally small deformations (strains). Fur-
ther details on the calculation of the elastic properties using
this method are given in the reference [49].
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Fig. 4. The elastic compliance matrix elements S∗
ij = Sijβσ

3 for the six models studied in this work at p∗ = 50, plotted with
respect to σ′/σ

III. 1. Computational Details
Elastic properties of the models have been obtained with

the use of MC simulations carried out in the NpT ensemble.
To study different thermodynamic conditions, the pressure
has been changed. The models were subjected to two differ-
ent values of external (reduced) pressure p∗ = 50 and 100.
In order to increase the efficiency of simulations, the lowest
pressure has been selected such as to avoid diffusion of par-
ticles within the crystal structure. The size of the simulated
samples was N = 864, which corresponds to 6×6×6 f.c.c.
unit cells. The number of particles forming inclusions was
Ninc = N/4 = 216, which corresponds to the concentration
c = 25%. Since the interaction potential used in this work
is purely geometrical in nature, any changes to the elastic
properties can be observed only when the geometry of the
interacting particles changes. Thus, for each model and each
value of p∗, the diameters of the inclusion particles σ′ were
changed with respect to diameters of matrix particles (σ).
The number of different values for scaling factor σ′/σ was

selected from the range of 0.95 to 1.08. The results were av-
eraged over at least seventy independent runs for each set of
parameters and for each model. The following section dis-
cusses only the results obtained for stable systems. Thus,
the presented range of σ′/σ for individual models and ther-
modynamic conditions differs. Each simulation run took 107

MC cycles. The first 106 of which was treated as the period
when the system reached thermodynamic equilibrium, and
was removed from calculations.

IV. Results and Discussion

It has been shown that introducing one [44] or more [46,
47] nanolayer inclusions in parallel to each other and orthog-
onal to [001]-direction, induces the change of the shape of
the system from cubic to cuboid. The ordering of layers in-
side the supercell is not relevant, which is shown in Fig. 3,
where the box matrix elements for all the studied systems
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Fig. 5. The non-zero elastic constants B∗
ij = Bijβσ

3, compared for all the studied models. The respective constants have been pair-wise,
grouping together constants that are equivalent in the cubic symmetry: B11 and B33, B12 and B13, B44 and B66 are plotted in respective
rows. The plots have been arranged in columns for different pressure values p∗ = 50 (left) and p∗ = 100 (right). Black lines designate

data for the reference SL3 (solid) and NL3 (dash-dot) systems

have been presented and compared with the previously stud-
ied NL3 and SL3 [46] models. It can be seen that with the
increase of the inclusion particle diameters (σ′), the systems
expand in x-y plane (increase of h11 and h22), and due to
an excess volume between matrix particles they compress
along z-direction, which is reflected in the decrease of h33.
On the other hand, when σ′/σ < 1 the systems are com-

pressed in the direction orthogonal to the inclusion planes,
but no noticeable change in h11 and h22 is observed. This
is due to the matrix crystal not being able to compress fur-
ther. In part (b) of Fig. 3 one can observe the off-diagonal
elements of the box matrices for all the studied system, plot-
ted in relation to h11. As it can be seen, they are at least
five order of magnitude less than their diagonal counterparts,
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Fig. 6. Poisson’s ratio in main crystallographic directions for all studied systems at p∗ = 50, compared to NL3 and SL3 reference systems

thus they can be treated as zero. This shows that inclusions
indeed transformed our models into cuboid systems, which
definitely leads to changes in the symmetry of studied model
crystals.

To investigate the symmetry of the structure, components
of the elastic compliance matrices for all the SL3-1X and
SL3-2Y systems have been plotted with respect to σ′/σ.
It should be noted that the introduction of the (001) inclu-
sion layers into the crystal of cubic symmetry, one loses
the 4-fold symmetry axis for the in-plane directions (x, y
in this case). Different arrangement of individual inclusions
within the supercell lower the symmetry to 2-fold axis in
[100] and [010] directions for SL3-1A, SL3-1D, SL3-2A, as
well as both NL3 and SL3 reference systems. However, in
the case of remaining SL3-1B, SL3-1C, and SL3-2B sys-

tems this is only 1-fold symmetry axis in the respective di-
rections. In Fig. 4, it can be observed that with the increase
of σ′/σ the components of elastic compliance matrix change
such that the conditions for the tetragonal symmetry are ful-
filled [58]: S11 = S22, S44 = S55, S13 = S23, and Sij = 0
for: i = 1, ..., 5, j = 4, 5, 6, i ̸= j. Thus, the elastic compli-
ance matrix has the following form:

S =


S11 S12 S23 0 0 0
· S11 S23 0 0 0
· · S33 0 0 0
· · · S44 0 0
· · · · S44 0
· · · · · S66

 . (7)
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Fig. 7. Poisson’s ratio in main crystallographic directions for all studied systems at p∗ = 100, compared to NL3 and SL3 reference systems

Although only small changes in elastic compliances are
observed when σ′/σ < 1, one should note that for every
case when σ′/σ ̸= 1 the system loses cubic symmetry and
exhibits tetragonal symmetry [58].

In Fig. 5, the comparison of the elastic constants for the
studied models has been presented. From eq. (5) one can see
that elastic constants matrix B can be obtained by inverting
the elastic compliance matrix S and, in the result, the former
will have the form:

B =


B11 B12 B23 0 0 0
· B11 B23 0 0 0
· · B33 0 0 0
· · · B44 0 0
· · · · B44 0
· · · · · B66

 . (8)

The data in Fig. 5 has been compared in pairs of constants
which are equivalent in the case of cubic symmetry, namely:
B11 and B33, B12 and B13, B44 and B66 are arranged in
rows. Open symbols of different size designate respective
models studied in this work. The data has been addition-
ally compared against the reference systems NL3 and SL3
indicated by dash-dot and solid black curves, respectively.
The columns indicate different pressure values set in the
simulations. The differences between NL3 and SL3 systems
(discussed in [46]) are especially apparent for B11 and B66

constants. One can notice that results for SL3-1X and SL3-
2Y systems are closer to SL3 system and their relation to
σ′/σ weakly depends on the type of the system, i.e. the
arrangement of the individual layers. One exception is the
SL3-1C system, which (at p∗ = 100) clearly deviates from
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Fig. 8. The surfaces of Poisson’s ratio for selected systems at pressure p∗ = 100. The surfaces have been ploted in spherical coordinates
(νmax – red, positive part of ν+

min – yellow, negative part of ν−
min – blue), as shown for the reference system at σ′/σ = 1. The scale for

each respective cube is indicated at the plots for the reference system

the other studied models. It is worth noting that this is one
of the models that does not exhibit the 2-fold symmetry
axis in [100] and [010] directions. Furthermore, the depen-
dence of elastic constants on σ′/σ for SL3-1C model is not
monotonic, which might suggest a possible phase transition
around σ′/σ = 1.05.

Figs. 6 and 7 present Poisson’s ratio calculated in the
main crystallographic directions [100], [110], and [111] for
systems under the reduced pressure p∗ equal to 50 and 100,
respectively. The directions [100] and [111] in the cubic sym-
metry are the co-called high symmetry directions, namely
the value of the Poisson’s ratio does not depend on the choice
of the direction of measurement (m⃗). It can be seen in the
figures that this is not the case for the tetragonal symmetry.
Moreover, the directions [110] and [101], equivalent in cubic
case, are different in the presented systems. Poisson’s ratio
values in the [110][11̄0]-direction, which is auxetic in cubic
case (σ′/σ = 1), tend to zero along with the increase of
inclusion particle diameters. There is very small or zero aux-

eticity in this direction at high σ′/σ for both pressures. In the
current case at p∗ = 50, the PR in this direction is close to
−0.1 for systems SL3-1A, SL3-1C, SL3-2B, and SL3-2A –
for which it is the lowest, and close to −0.061 for the re-
maining models. For both pressures, the Poisson’s ratio for
the studied systems is varying only in some cases at the high-
est considered σ′/σ. In general, the PR values among the
studied models are very close to each other for the given σ′.
They are also close to the SL3-1X reference system, which
suggests that spatial localization of the individual layers in-
side the crystal has a rather small effect, provided that the
individual layers are separated with at least one layer of par-
ticles forming the matrix crystal. A similar pattern can be
observed for systems under the pressure p∗ = 100 (Fig. 7).
However, here we can observe that the system SL3-1C be-
haves differently from the other ones. One can see that aux-
eticity is induced in the [111][11̄0] direction, and the PR val-
ues in the [101][1̄01]-direction are significantly lower, reach-
ing ν = −0.162. Similarly to the above discussion of Bij
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elastic constants for SL3-1C system, here one can see that
the behaviour of Poisson’s ratio versus σ′/σ is not mono-
tonic, which might suggest the possible phase transition in
the vicinity of σ′/σ = 1.05. However, confirming this will
require further in-depth studies of SL3-1A, SL3-1C, SL3-
2A, and possibly the SL3 systems (as they show tendency to
decrease the value of PR in this direction). This will be the
subject of a future article.

Fig. 8 shows 3D visualizations of Poisson’s ratio in
spherical coordinates for selected systems. The data pre-
sented in the inserts are the surfaces of maximum and min-
imum Poisson’s ratios plotted with respect to the loading
direction n⃗ parametrized by polar and azimuthal angles θ,
φ. To facilitate the comparison of the data between differ-
ent systems, these surfaces have been plotted in a spheri-
cal coordinate system, forming a set of three distinct plots
per given system and particular value of σ′/σ. The red plot
corresponds to the surface of maximum PR (νmax), the yel-
low and blue plots correspond to positive (ν+min) and neg-
ative (ν−min) parts of the minimum PR surface, respectively.
The respective inserts have been plotted to the same scale, in-
dicated on the reference system. Here one can see the reason
for the different behaviour of SL3-1C and SL3-2B systems
in Fig. 7. It can be observed that whereas for σ′/σ = 1.05
all the systems have similar elastic properties (notably the
auxeticity of SL3-2B is smaller), for σ′/σ = 1.08 the aux-
eticity of SL3-2B has been almost removed and for SL3-1C
the latter has been significantly enhanced.

V. Conclusions

In this work, a number of hard particle systems contain-
ing three nanolayer inclusions in the unit supercell have been
investigated. The systems differed in spatial localisation of
individual nanolayers, which were parallel to each other and
oriented orthogonally to [001] direction. The investigations
have been carried out using Monte Carlo computer simula-
tions in the isothermal-isobaric ensemble, based on the idea
by Parrinello and Rahman. The investigations, supported by
reference models from previous studies, showed that the
most notable differences in elastic properties of such mod-
els are observed in cases where the introduced inclusions
are either grouped together or they are separated by at least
one layer of the matrix crystal. Elastic properties of differ-
ent variants of systems with separated inclusions have been
found to be very close. This suggests that in practical real-
isation of such systems using modern nanotechnology [48],
the strict control over depositing individual layers may not
be a critical factor in achieving a system with desired elas-
tic properties. An important note should be made at the end.
Namely, in the case of some of the studied systems a decrase
of the Poisson’s ratio has been observed, and in one of the
systems new auxetic directions have been induced.
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