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Determination of Elastic Moduli of the r−12 Soft Disk Crystal
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Abstract: Elastic moduli of soft disk crystals close to the melting point have been evaluated by Monte Carlo simulations.
The inverse-power potential has been used to model the interactions between particles. In calculations of the elastic moduli
by the Parrinello-Rahman formalism, the long-range interactions between atoms have been taken into account using the
minimum image method. The study shows that for systems consisting of around a hundred particles there are differences
between the values of the elastic moduli obtained by the calculations using the minimum image method and those coming
from the traditional approach. It has been found that the elastic moduli obtained by the simulations using the minimum
image method even for as small as a hundred-particle systems are very close to these values at the thermodynamic limit
N → ∞.
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I. Introduction

Elastic properties belong to the fundamental physical
properties of materials. Determination of elastic properties
by computer simulations is an important element that helps
in understanding phenomena observed in complex real sys-
tems. In simulations, various inter-particle interactions (short
and long-range) are used to study the physical properties of
the system. One of the fundamental inter-particle potentials
in computer simulations is the Lennard-Jones (LJ) poten-
tial [1]. Its significant role comes not only from its simplic-
ity but, most of all, from the fact that this model potential
allows one to describe the physical properties of noble gases
and various properties of simple liquids [1, 2]. The LJ po-
tential is also used as a reference potential to test new theo-

ries and computational methods [2]. Application of the min-
imum image method (MIM) [3, 4] for determining the elas-
tic properties of the LJ system showed that the contribution
of long-range interactions cannot be neglected [5]. The LJ
potential consists of two parts: attractive (∼ r−6) and re-
pulsive (∼ r−12). This raises the question of whether the
contribution of the repulsive part to long-range interactions
influences essentially elastic properties. To answer the posed
question we evaluate the elastic properties of the simplest
model system, namely a classical two-dimensional system
of particles interacting via the inverse-power potential

ϕij = ϵ

(
σ
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)−12

, (1)
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where rij is the distance between the interacting particles,
σ is the particles’ diameter, and ϵ sets the energy scale.

The aim of this work is twofold. Firstly, we determine the
elastic moduli of soft disks interacting through the inverse-
power potential (1) close to the melting point at thermody-
namic limit N → ∞. Secondly, we investigate the influ-
ence of long-range interaction on values of calculated elastic
moduli using the method of the minimum image that better
reproduces the symmetry of the studied solid than the mean-
density approximation [5].

II. Method and Computational Details

Simulations of the hexagonal structure of soft disks were
performed in periodic boundary conditions. Atoms located
in sites of a triangular lattice occupying a rectangular sim-
ulation box interact through the inverse-power potential (1).
To calculate the elastic properties of soft disk systems, sim-
ulations were performed in the NpT ensemble using the
Parrinello-Rahman method based on the idea of averaging
strain fluctuations [6, 7].

The Gibbs free energy of a two-dimensional hexagonal
crystal under an isotropic pressure is [8]

G = G(0) +
B

2
Vp(εxx + εyy)

2

+
µ

2
Vp(4ε

2
xy + (εxx − εyy)

2) , (2)

where G(0) is the free enthalpy of the system without defor-
mation at pressure p and the reference (equilibrium) volume
Vp, B is the bulk modulus, µ is the shear modulus, and εij
are the components of the strain tensor. More details of the
method can be found in Ref. [9].

Alternatively, the elastic properties of the system can be
described using Poisson’s ratio and Young’s modulus instead
of elastic moduli. The Poisson’s ratio of a two-dimensional
isotropic system is

ν =
B − µ

B + µ
, (3)

and the Young’s modulus reads

E =
4Bµ

B + µ
. (4)

As shown in [5], long-range interactions cannot be ne-
glected when calculating elastic properties and should be ap-
propriately taken into account. In this work, when determin-
ing the elastic properties of the system, long-range interac-
tions were considered in two different ways. In the first case,
the classical mean-density approximation was used, and in
the second, the minimum image method was used.

An accounting of the long-range interactions in com-
puter simulations is computationally quite “expensive”.
In traditional calculations, the mean-density approximation
is used, and the contribution of long-range interactions to

the potential energy for the particle i is taken into account
by the energy correction (uLRC) as follows

ui =
∑
j

ϕij + uLRC, (5)

where the sum takes the contribution of the particles in the
simulation box for which rij < Rcut where Rcut is the cut-
off radius (Fig. 1). The second term is the correction of long-
range interactions by the mean-density approximation

u∗
LRC =

πρ∗

10

(
σ

Rcut

)10

, (6)

where u∗ = u/ϵ is dimensionless energy, ρ∗ = (N/V )σ2

is number density, V is volume of the system, and N is the
number of particles in the system.

Fig. 1. Simulation box and its images in first and second zones.
In the middle is the simulation box with particles denoted as black
disks. The first zone is denoted in light grey color. The second zone
is shown in dark grey color. The images of particles from the simu-
lation box are shown as grey disks. In the first zone are the nearest
images of particles from the simulation box. In the second zone are

the next images of particles. Rcut is the cutoff radius

In the minimum image method, the calculations of po-
tential energy are performed for the ith particle of coordi-
nates (xi, yi) and for the 8 images of the particle with coor-
dinates (xi + kLx, yi + lLy) where k, l = −1, 0, 1 and Lx,
Ly are the sides of the simulation box in x and y-directions,
respectively. This corresponds to the use of particle images
from the first zone (Fig. 1). For the second zone, the calcula-
tions of potential energy are performed for the ith particle of
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coordinates (xi, yi) and for the 24 images of the particle with
coordinates (xi+kLx, yi+lLy) where k, l = −2,−1, 0, 1, 2
(Fig. 1). Therefore, the contribution of the nonuniform spa-
tial arrangement of particles (comes from the crystal sym-
metry) and long-range interactions to the energy due to con-
sidering the particle images are taken into account. So, the
potential energy of the particle i is [5]

ui =
∑
j

ϕBOX
ij +

∑
k

ϕMIM
ik + uLRC, (7)

where the first sum represents the contribution of particles of
the simulation box, the second sum describes the contribu-
tion of the image particles from outside the simulation box,
and the third term is the energy correction of long-range in-
teractions by the mean-density approximation. In the present
study, the cut-off radius of the inverse-power potential in
Eq. (6) was taken from the condition so that the area of a cir-
cle (with radius rcut) equals the area of rectangular (LxLy)
which was considered in the MIM.

Simulations were performed in dimensionless units:
T ∗ = kBT/ϵ is temperature (where kB is the Boltzmann
constant), p∗ = pσ2/ϵ is pressure, B∗ = Bσ2/ϵ is the bulk
modulus, µ∗ = µσ2/ϵ is the shear modulus and the Young’s
modulus is given by E∗ = Eσ2/ϵ.

To evaluate the elastic moduli close to the melting point,
the Monte Carlo (MC) simulations in the NpT ensembles at
T ∗ = 1 and p∗ = 17.45 were performed for both the clas-
sical MC scheme and MC with MIM. Various sizes of the
systems to determine the bulk modulus and shear modulus
at thermodynamic limit N → ∞ were used in both cases.

The classical Monte Carlo scheme [12] was used with
two cutoff radii. In the first case, the samples of N = 56,
120, 224, 288, 504, 780, 1024, and 2016 particles were sim-
ulated with rcut = 2.5σ. In the second case, all particles in
the simulation box were taken into account, and for the sam-
ples N = 56, 120, 224, 288, 504, 780, and 1024 particles
rcut = ( 2

√
LxLy/π)σ were used. Further in the text, this

case is denoted as “Box”.
Two kinds of MC simulations with MIM were per-

formed. The first kind of simulation concerned the case
where the image particles from the first zone were used.
The systems consisting of 56, 120, 224, 288, and 504 par-
ticles were simulated taking into account 448, 960, 1792,
2304, and 4032 particle images. The second kind of simula-
tion concerned the case where the image particles from the
first and the second zones were used. The systems consist-
ing of 56, 120, 224, 288, and 504 particles were simulated
by considering 1344, 2880, 5376, 6912, and 12 096 particle
images.

In all simulations, two kinds of trial motions were used.
The first kind concerned changes in the particle positions,
and its acceptance ratio was close to 30%. The second kind
of motion corresponded to changes in the components of the
symmetric box matrix and was tried about

√
N times less

frequently than the atom motions, and their acceptance ra-
tio was close to 20%. For both traditional MC and MC with
MIM, the typical length of the simulation run was equal to
107 cycles (trial steps per particle) for all system sizes after
equilibration 5× 105.

III. Results and Discussion

For calculation of the bulk and shear moduli in the
thermodynamic limit, four different approaches were used:
(i) a spherical truncation (MC: Rcut), (ii) all particles in the
simulation box (MC: Box), (iii) the minimum image method
for the first zone (MIM MC: Box+1), and (iv) the minimum
image method for the first and second zones (MIM MC:
Box+2).

In the first approach, the elastic moduli were determined
based on the classical MC simulations which was consid-
ered only for the particles being within the circle diameter
Rcut = 2.5σ and using the standard amendments to the en-
ergy (5). We performed a series of MC simulations with in-
creasing the size of the system. Using extrapolation N → ∞
for the obtained results, the bulk and shear moduli in the ther-
modynamic limit have been determined. The results of this
approach are shown in Fig. 2 by filled circles and the dotted
line. There is a strong dependence of the elastic moduli on
the size of the system. The results of the second approach
(MC: Box), where all particles in the simulation box were
taken into account, look similar to the first case (MC: Rcut),
and still, essential size dependence was observed.

In the third case (MIM MC: Box+1), the bulk and
shear moduli were calculated from MC simulations with the
method of the minimum image that takes into account all of
the particles in the box of periodicity and its nearest images
(the first zone). In Fig. 2, the results are presented by the
open square and the dashed line of extrapolation determines
the value of elastic moduli in the thermodynamic limit. In the
last fourth case (MIM MC: Box+2), additionally to all of
the particles in the periodic box and its nearest images (the
first zone), the images of particles from the second zone are
also taken into account in the energy calculation. The results
of those calculations are presented in Fig. 2 with open dia-
monds and black lines. In both cases of MIM MC (Box+1
and Box+2), a very weak dependence on the size of the sys-
tem is observed for the bulk modulus. This shows results for
small systems of the order of 100 particles differ by only
a few percent from the values of elastic moduli in the ther-
modynamic limit. The obtained results confirm that using
the minimum image method leads to a much better estima-
tion of the part of the energy related to the deformation of the
simulation box than the amendment to the energy based on
the mean density approximation. This is especially visible in
small systems.

Based on present calculations we obtain the following
values of bulk and shear moduli in the thermodynamic limit
(N → ∞) B∗ = 83.7(4) and µ∗ = 24.4(2) close to the
melting point at T ∗ = 1.0 and p∗ = 17.45. Besides, it should
be stressed that the present calculations also agree with the
literature results from Ref. [10] and Ref. [11] (see Fig. 2).

Knowledge of the elastic moduli allows us to calcu-
late Poisson’s ratio and Young’s modulus using formulas
(3) and (4), respectively. The dependence of Poisson’s ra-
tio and Young’s modulus on the size of systems is presented
in Fig. 3. It is interesting to note the weak dependence on
the system size of Poisson’s ratio for all types of calcula-
tions, both classical and MIM MC. However, Young’s mod-
ulus is strongly dependent on the size of the system in the
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Fig. 2. a) Bulk modulus and b) shear modulus as a function 1/N where N is the number of particles in the simulation box. Filled circles
represent the results obtained in this work using traditional MC simulations with Rcut = 2.5σ. Filled squares represent the results of
simulations where all particles in the simulation box were considered. Open squares correspond to the results of simulations where all
particles in the simulation box and their images from the first zone were taken into account. Open diamonds present the results of simu-
lations where all particles in the simulation box and their images from the first and second zones were taken into account. Results of MC
simulations are represented in open circles from Ref. [10] and open triangles from Ref. [11]. The dotted line is the linear interpolation
to the results of traditional MC simulations with Rcut = 2.5σ (denoted by filled circles). The dashed line is the linear interpolation to
MC results of simulations where all particles in the simulation box and their images from the first zone are considered (denoted by open
squares). The black line is the linear interpolation to MC results of simulations where all particles in the simulation box and their images

from the first and second zones are considered (denoted by open diamonds)
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(a) (b)
Fig. 3. a) Poisson’s ratio and b) Young’s modulus as a function 1/N where N is the number of particles in the simulation box. Filled
circles represent the results obtained in this work using traditional MC simulations with Rcut = 2.5σ. Filled squares represent the results
of simulations where all particles in the simulation box were taken into account. Open squares correspond to the results of simulations
where all particles in the simulation box and their images from the first zone were considered. Open diamonds present the results of
simulations where all particles in the simulation box and their images from the first and second zones were taken into account. Results of
MC simulations are represented in open circles from Ref. [10] and open triangles from Ref. [11]. The dotted line is the linear interpolation
to the results of traditional MC simulations with Rcut = 2.5σ (denoted by filled circles). The dashed line is the linear interpolation to
MC results of simulations where all particles in the simulation box and their images from the first zone are considered (denoted by open
squares). The black line is the linear interpolation to MC results of simulations where all particles in the simulation box and their images

from the first and second zones are considered (denoted by open diamonds)



Determination of Elastic Moduli of the r−12 Soft Disk Crystal by the Minimum Image Method 15

case of traditional calculations and weak in the case of cal-
culations using the minimum image method, similar to the
case of bulk and shear moduli. The values of Poisson’s ra-
tio and Young’s modulus in the thermodynamic limit equal
0.549(7) and 75.5(5), respectively. The above values have
been estimated by the extrapolation N → ∞ for the results
obtained from MIM MC Box+2 simulations.

IV. Conclusions

The elastic moduli of the soft disk systems in the ther-
modynamic limit N → ∞ have been calculated in the
NpT ensemble using the standard MC simulations and the
MC simulation with the minimum image method. The lit-
erature data and simulation results obtained in the present
work are compared and found in good agreement. The ap-
plied method allows one to obtain correct values of the elas-
tic moduli for small systems consisting of around a hundred
particles. The Monte Carlo simulations with the minimum
image method give a good approximation of the contribution
of the part of the energy that takes into account the long-
range interactions and better reproduces the symmetry of the
studied solid than the traditional approach using the mean-
density approximation.

It is worth noting that the contribution of the repulsive
part to long-range interactions of such potential as ∼ r−12

in a two-dimensional system influences essentially elastic
properties for small systems only.
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