
CMST 29(1–4) 57–64 (2023) DOI:10.12921/cmst.2023.0000027

Density Functional Formalism as a Description
of the Elastic Behavior of a Hard-Sphere Crystal
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Abstract: The density functional method of Jarić and Mohanty [Phys. Rev. B 37, 4441 (1988)] for calculating the elastic
moduli of crystalline solids is considered here from the perspective of some new findings. The very slow convergence
of the reciprocal-lattice vector summations and presence of the three body term in the method’s computational scheme
identified in [J. Chem. Phys. 118, 6594 (2003)] is confirmed and discussed. The sensitivity of the results to the scheme
parameters, such as the width of the Gaussian density profiles and the Percus-Yevick approximation used for the direct
correlation function is explored. The calculations are for a hard-sphere crystal but most conclusions can be applicable to
model crystalline solids in general.
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I. Introduction

Density functional theory (DFT) has been widely used
in condensed matter, computational physics and chemistry
quantum applications. The application of DFT used in this
work is the classical analog of the popular methods of Ho-
henberg and Kohn [1] and Kohn and Sham [2, 3]. The the-
oretical basis of this classical DFT version is a theorem by
Mermin [4] which establishes a one-to-one correspondence
between the local density and the external potential. This al-
lows us to express the thermodynamic potential of a system
(e.g., the Helmholtz or Gibbs free energy) as a functional of
the local density [5]. The DFT method has probably found
its greatest application in the study of first-order phase transi-

tions, in particular in the description and prediction of freez-
ing [6–10].

The hard-sphere (HS) system has been the standard test
of DFT methods of freezing and their development. The ad-
vantage of using the HS system is that its phase diagram only
depends on the density, and the Percus-Yevick (PY) equa-
tion [11] gives a fairly accurate approximation of the two-
particle direct correlation function (DCF) used in the theory.

Several forms of DFT have been developed [11–16] and
in the context of the freezing-melting transition investiga-
tions the approach based on a thermodynamic perturbation
expansion around a liquid state has often been exploited.
This was formulated in the language of the direct correlation
function by Ramakrishnan and Yussouff (RY) [9, 17, 18].
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Tab. 1. List of acronyms used in this work and their explanations

Acronym Explanation

DFT density functional theory

HS hard-sphere

MD molecular dynamics

MC Monte Carlo

PR Poisson’s ratio

DCF direct correlation function

PY Percus-Yevick

RFA rational function approximation

RY Ramakrishnan and Yussouff

JM Jarić and Mohanty

BC Baus and Colot

FL Frenkel and Ladd

TW Tretiakov and Wojciechowski

SSM Sushko, van der Schoot and Michels

Within the framework of the RY approach the first DFT ap-
plication for calculating elastic constants of crystalline solids
was proposed by Jarić and Mohanty (JM) [19–21]. In their
approach the distribution of particle positions in a crystal,
as expressed in terms of the one particle distribution func-
tion, are represented by the summation of narrow Gaus-
sians, and the crystal is related to a chosen reference liquid.
It should be mentioned that the results obtained from these
DFT calculations have been considered to be largely unsatis-
factory. First, the elastic constants obtained differed signifi-
cantly from those determined by computer simulations, e.g.,
the difference for the shear elastic component at the melt-
ing was more than three hundred percent [21]. Secondly, the
authors obtained a negative Poisson’s ratio (PR) for hard-
spheres which is qualitatively incorrect, as was pointed out
by Frenkel and Ladd [22]. In reply, Jarić and Mohanty [23]
suggested that the inclusion of the three-body direct corre-
lation function could improve the results. Their conclusion
was that by the inclusion of the main part of the three-body
direct correlation function [24] a positive value for the PR
can be achieved but, as was shown, its magnitude was far
too low.

In 2003, Sushko et al. [25] demonstrated that the pro-
posed three-body correction term is indeed significant and it
is possible to improve the original theory by adding this extra
term. These authors showed that the values of the elastic con-
stants can depend significantly on the number of reciprocal-
lattice vectors used in the calculations, which were not suffi-
cient in the calculations of Jarić and Mohanty. Therefore, it
may be concluded that Sushko et al. found that the DFT ap-
proach can provide reasonable agreement with the computer
simulations, when the three-body direct correlation function
and enough number of reciprocal-lattice vectors are included
in the summation.

Taking into account the significance of these findings and
that there are more recent computer simulation values for the
elastic constants of the hard-sphere crystal in the literature,
we have revisited the density functional route in this work.
The DFT approach used to calculate the elastic properties
here is presented in the next section, Sec. II. In Sec. III, the
role of the number of reciprocal-lattice vectors employed in
the calculation scheme is discussed in more detail. Also, in
that section the robustness of the results to the model param-
eters and the significance of the approximation used for the
DCF are analyzed. Conclusions are made in Sec. IV. A list
of the acronyms used in this work is given in Tab. 1.

II. Elastic Constants from the DFT

The main aim of this section is to present how the elastic
constants of the HS crystal are expressed in terms of the DFT
elastic components. As the thermodynamically stable struc-
ture of the HS crystal is considered to be face-centered cubic
(fcc) the expressions presented below are for cubic symme-
try (the more general formulas are given in the original JM
work [21]).

A one-particle density distribution ρ(r) in the crystalline
phase can be approximated well by a lattice sum of narrow
Gaussians with the same variance,

ρ(r) =
ρS

Ncπ3/2α3/2

∑
{R}

exp

(
− (R− r)2

a2α

)
, (1)

where R indicates the set of the real-space perfect crystal
lattice vectors, r is the instantaneous position of the parti-
cle, a is the lattice constant, α describes the (dimensionless)
width of the Gaussian local density profile (measured in units
of the lattice constant a), ρS = Nc/a

3 is the average density
of the crystal, and Nc is the number of sites per unit cell.

In the method proposed by JM the elastic free energy
of the strained solid is expanded around the unstrained state
in terms of the strain ϵ and α variation [21]. The isother-
mal elastic moduli are computed from the quadratic terms
(the zero- and first-order terms vanish [21]) by first mini-
mizing the grand thermodynamic potential of the unstrained
solid [10, 25],
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(3)
L (0, 0),

with respect to the density of the reference liquid ρL,
the equilibrium width α and the lattice constant parame-
ter a (from which the solid density, ρS, can be obtained).
In the above equation G is the set of the reciprocal-lattice
wave vectors, η = (ρS − ρL)/ρL, kB is the Boltzmann
constant, T is the temperature, µS and µL are the chemical
potentials of solid and liquid phase, respectively. The sec-
ond minimization is with respect to the variational parameter
∆α = α(ϵ)− α.
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From the minimizing procedure the following elastic
modulus tensor was obtained [21],

C = Cϵϵ −Cϵα : (Cαα)−1 : Cαϵ. (3)

For cubic crystals there are three independent elastic con-
stants which in Voigt notation are denoted by C11, C12 and
C44 [26].

The resultant expressions for the elastic moduli compo-
nents of cubic solid in the DFT formulation are [21, 25],

C̃ϵϵ
11 = (η + 1)− (η + 1)2ρLc

(2)
L (0) + (4a)
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In the above expressions c(2)L (|G|) is the liquid direct corre-
lation function, and c

′(2)
L (|G|), c

′′(2)
L (|G|) are their first and

second derivatives.
In the equations,

ξG = (η + 1) exp

(
−1

4
|G|2a2α

)
, (5)

which is basically a Fourier representation of the Gaussian
density distribution in Eq. (1), and the DFT elastic coeffi-
cients are in the dimensionless form C̃ij = Cij/kBTρL.

Fig. 1. In frame (a) the lattice constant a is shown as a function
of the solid density, ρS. In frame (b) the α parameter (measured
in units of the lattice constant a) which describes the (dimension-
less) width of the one-particle density profile is shown as a function
of solid density. The solid black points represent the MD data ob-
tained in this work. The solid black line is a 4th order polynomial
fit to the data. The blue pluses and red open squares are data from
Ref. 27 and 28, respectively. The vertical thin dashed lines indicate

the melting and close packing densities

Note that the three-body direct correlation function term
is present in the above equations (2), (4a) and (4d). Sushko
et al. [10, 25] used the three-body DCF terms proposed
by [23], as an advance on their original formulation [21].
The three-body term can be calculated as the density deriva-
tive of c(2)L (q) [10, 25],

c
(3)
L (q, 0) =

∂c
(2)
L (q)

∂ρ

∣∣∣∣∣
ρ=ρL

. (6)

To compute the above elastic moduli from the expres-
sions in Eqs. (4) the values of α, ρS and ρL are needed. In the
JM method these quantities are obtained as the result of the
minimization of Eq. (2) for the unstrained solid i.e., from the
first minimization.

Finally, the elastic constants of the HS crystal according
Eqs. (3) and (4) are (see Appendix C in Ref. 21),
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To analyze the above expressions for the DFT approach,
there are several issues to be considered. First, the influence
of the c

(3)
L (0, 0) term on the C̃ij values and other elastic

properties such as the PR has to be verified. This issue was
investigated and, as mentioned in the Introduction, the three-
body term was observed previously to improve the level of
agreement of the elastic constants with those obtained di-
rectly by computer simulation [23, 25]. Secondly, as indi-
cated by Sushko et al. [25] the results obtained with Eqs. (4)
can be quite sensitive to the number of the reciprocal wave
vectors G used in the summations, and in fact it was shown
that as many as 20 000 vectors are required to obtain C̃ij

values that are sufficiently converged to make a meaning-
ful comparison with the simulation values. This extremely
slow convergence probably could not have been observed in
calculations carried out in the 1980s with the computer re-
sources available at that time.

The third issue is the type of approximation for the di-
rect correlation function used in the calculations, which pre-
viously was using the Percus-Yevick analytic solution. Also,
the first minimization procedure gives the values for α, a (or
ρS) which only approximates the simulation values. All of
these issues are explored in the next section.

III. Results

The Monte Carlo (MC) derived elastic properties by Tre-
tiakov and Wojciechowski [29, 30] are used to compare with
the DFT approximation predictions. The parameters α and
the lattice constant a were calculated from MD simulations
carried out here. The HS system consisted of N = 4000
particles in the simulation box which was first equilibrated
for 107 collisions, and then production data were collected
over the following 108 collisions. The values of α and a as
a function of solid density are shown in Fig. 1.

As Sushko et al. showed [25], to improve the JM DFT
approach it is important not only to include the three-body
term, but also to take a sufficient number of reciprocal-lattice
vectors, as is demonstrated in Fig. 2 for three different solid
densities. The calculated quantities become saturated only at
a very large number of vectors, nc, which increases with den-
sity (e.g., nc ≈ 20 000 is required for ρS ≈ 1.1). If n < nc

there are large oscillations about the final value, and only
taking the first several tens of G vectors can give a mislead-
ing impression of convergence, as seen for the cumulative
averages in Fig. 3. It seems that this behavior can lead to
a qualitatively incorrect value of PR if the three-body term
is not included in the calculations and a sufficient number of
vectors is not taken in the summations. As was demonstrated
in [25] including the three-body term and using n > nc in
the summations improved the agreement between the DFT
and simulation data for the elastic properties of the fcc hard-
sphere solid. However, as shown in Fig. 4a the agreement is
far from perfect and is only at the order of magnitude level,
while the C̃ij values differ quite significantly from the ‘ex-
act’ simulation result which can be seen by comparing the
dashed and solid lines with the same color.

A possible reason for this discrepancy may be the ap-
proximate values of the parameters used. As mentioned

Fig. 2. The dependence of the dimensionless elastic moduli C̃11

(blue points), C̃12 (red squares), C̃44 (green triangles) on the num-
ber, n, of the reciprocal-lattice vectors taken into account in the
summation in Eqs. (4) is presented for the hard-sphere crystal at
densities ρS = 1.05 in frame (a), ρS = 1.10 in (b) and ρS = 1.20

in (c)

above, to compute the elastic moduli in Eqs. (4) the α, ρS
and ρL are determined from the minimization of ∆ω in
Eq. (2). The results of such an approach usually do not give
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the values of α(ρS) and a(ρS) from the MD simulations
as presented in Fig. 1. The ‘exact’ HS crystal values for
α and a from Fig. 1 were taken to check the behavior of
Eqs. (4) (and therefore the expressions for C̃ij in Eqs. (7))
with variation of the input parameter values. With this as-
sumption there are different possible schemes for establish-
ing ρL and we considered one proposed by Baus and Colot
(BC) [13, 14] in which the reference fluid is equal to the ef-
fective fluid defined in the DFT method. In their scheme the
‘effective fluid density’ is associated with the solid density
for which the smallest value of the reciprocal-lattice vector
G and the position of main peak of the static structure factor,
S(q) of the fluid overlap.

Using the BC approach the value of ρL was estab-
lished for each of the crystal densities considered. The re-
sults of these calculations of the elastic constants are shown
in Fig. 4a. As may be seen, the results from a different
scheme for the parameter selection do not differ signifi-
cantly from those previously obtained (represented by the
dashed lines). The data points (closed symbols) still differ
from the simulation data (the solid bold lines and open sym-
bols) to a similar extent as obtained in Ref. 25. In Fig. 4b
the Poisson’s ratio along the [1,0,0] crystallographic direc-
tion, ν = (C12 + P )/(C11 + C12) is shown, where P is the
pressure of the HS crystal calculated from the analytical ZS2

formula from Ref. 31. The DFT values are positive and fol-
low quite well the simulation results, at least for the range of
densities considered.

Finally, the influence of the PY approximation for the
DCF, c(q), is assessed by performing the calculations with
the Rational Function Approximation (RFA) solution [32,
33]. The cRFA(r) function is considered to be a more ac-
curate representation of the HS DCF in, for example, being
non-zero for r > σ [33]. The cPY(q) and calculated cRFA(q)
(and their difference) from this study are shown in Fig. 5.
As is visible, the main differences between these functions

Fig. 3. The cumulative average of the dimensionless elastic moduli
C̃11 (blue points), C̃12 (red squares) and C̃44 (green triangles) as
a function of the number, n, of reciprocal-lattice vectors used in the
summation in Eqs. (4). The solid density, ρS = 1.05 and the solid

horizontal lines are only to guide the eye

Fig. 4. In the top frame (a) the dimensionless elastic coefficients
C̃11, C̃12 and C̃44 are presented. In the bottom frame (b) the Pois-
son’s ratio, ν is shown. In the figure: MC FL denotes Monte Carlo
data by Frenkel and Ladd [22], MC TW are the Monte Carlo data
by Tretiakov and Wojciechowski [29, 30], DFT SSM are the DFT
results from Sushko et al. [25]. DFT BC denote results from this
work (Eqs. (7) in Sec. III). The dashed and solid colored lines in
frame (a) and the solid black line in frame (b) are to guide the eye.
The vertical thin dashed lines in both frames indicate the melting

density, ρm = 1.0376

are for q < 10, but a tiny oscillatory difference persists also
for very large q. The C̃ij and PR values calculated with the
RFA solution are given in Fig. 6. A comparison between
Figs. 4 and 6 indicates that there is some influence on c(q)
from the approximation used in the DFT approach. The RFA
approximation causes a relative reduction in the values of
the coefficients obtained compared with the PY approxima-
tion. In particular, a very good representation of the C̃44 co-
efficient is obtained. The slightly better agreement with the
simulation data for C̃11, C̃12 and the good agreement for the
PR at the melting density should be considered to be rather
accidental.

IV. Summary and Concluding Remarks
The work concerns the problem of calculating elastic

constants using the density functional theory. The issue of the
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Fig. 5. The wave vector, q-dependence of the direct correlation
function for a liquid density of ρL = 0.9884. The solid red
and green lines represent the PY and RFA c(q) data, respectively.
The difference between these two approaches ∆ = cPY(q) +

−cRFA(q) is shown in the inset as a magenta line

convergence of the summations in the DFT method calcu-
lations is analyzed. The influence of varying some of the
method’s parameters and the approximate representation of
the direct correlation functions are also assessed.

The importance of calculations with a sufficiently large
number of reciprocal-lattice vectors was confirmed. Changes
in the calculated elastic constants can be of the order of sev-
eral hundred percent, depending on the minimum number of
reciprocal vectors, nc adopted. It is shown that the value of
nc to ensure sufficient convergence of the calculated sums
increases significantly with density. Also, it is worth empha-
sizing that significant changes occur on a scale of several
hundred reciprocal-lattice vectors G, and therefore the true
converged value can only be observed on the scale of several
thousand G vectors.

The calculations indicate that small changes in the
method’s parameters a, α, and ρL do not affect significantly
the calculated elastic constants C̃ij . This means that varia-
tion of these parameters does not lead to a significant im-
provement in the consistency of the results obtained using
DFT with the ‘exact’ simulation results.

The results of the DFT calculations with the rational
function approximation solution slightly improve agreement
of the elastic constants with the corresponding simulation
derived quantities compared to the Percus-Yevick closure.

The calculations indicate that the use of an appropriate
number of terms in the summations, the three-body term cor-
rection and a better approximation of the DCF may lead to
a relatively good approximation for elastic constants and the
Poisson’s ratio, at least for the region close to the melting
density, where the DFT method is expected to yield the best
representation of the physical properties mainly because it is
based on the density in the fluid phase.

Finally, note that the method considered in this work is
not only intended for the HS system. It is a fairly general
and fundamental approach which has also been proposed

Fig. 6. As for Fig. 4 except that the PY solution was replaced by
the RFA approach in the calculations

for other types of inter-particle interactions and solid sym-
metries. In fact, the authors who pointed out the key sig-
nificance of the convergence of the sums in the calcula-
tion, applied it to the crystallization of the flexible polymeric
chains [10, 25]. Also, the DFT elastic moduli are important
ingredients of the revised kinetic theory [34] of the trans-
port properties of the HS crystal [35, 36]. In this approach,
the viscosity tensor of a hard-sphere crystal is expressed in
terms of three parts: instantaneous, kinetic, and so called al-
pha part. The estimation of the last part requires the DFT
elastic components.
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