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Abstract: In this work the systems composed of particles interacting with hard potential are investigated. These systems
feature certain modifications to the crystal structure – selected particles are replaced with ones that differ slightly in their
diameters. Such modifications, which can be thought of as “inclusions”, concern particles located in cylindrical nanochan-
nels, oriented in [001] direction. In this study, for the first time, additional constrains have been imposed on the particles
forming the inclusions. Namely, the replaced spheres have been randomly grouped into neighbouring pairs which were
connected to form simple, di-atomic molecules. The results have been compared with previously investigated systems with
similar inclusions but without the connections, i.e. filled only by spheres. The comparison of elastic properties between
these systems is presented. It is shown that inclusions filled with dimers have different impact on the values of elastic
compliances. It has been demonstrated that by introducing a small number of molecules made of spheres whose diameters
differ from the rest of the particles forming the crystal, one is able to modify the hardness and shear resistance of the f.c.c.
crystal without changing the Poisson’s ratio (with respect to the analogous system without additional constrains imposed
on the inclusion particles).
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I. Introduction

Auxetic [1] materials, i.e. materials with a negative Pois-
son’s ratio [2] (PR), have been known for over thirty years,
but their practical applications to date are still rare. One of
the reasons for this can be attributed to the lack of deep
understanding of the nature of their extraordinary proper-
ties. First man-made material with negative Poisson’s ratio
was reported in the late 1980s [3]. In the same time the
first thermodynamical model showing auxetic properties was
proposed and rigorously solved [4, 5]. However, the start
of the cyclic scientific conferences on auxetic and related
systems was the reason why the studies on auxetic mate-

rials gained pace. New man-made auxetic materials in the
form of foams [6–8], polymers [9, 10] and composites [11],
as well as in the specifically engineered structures [12–18],
nanostructures [19], or metamaterials [20–27] have been re-
ported. Novel fabrics with auxetic properties [28–31], tar-
geted for personal applications have been developed. Along-
side the experimental studies, new theoretical models ex-
hibiting negative Poisson’s ratio [32–46] have been pro-
posed. The search for the negative Poisson’s ratio in known
and naturally occurring materials revealed that around 70%
of metals with cubic symmetry have such properties [47].
The latter can be observed only in the vicinity of specific
crystallographic directions, thus making these metals par-
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tially auxetic [48]. Baughman et all. described the mecha-
nism that explained the origins of auxetic properties in cubic
monocrystals. Nevertheless, the understanding of auxeticity
in the broader context (e.g. in two component materials) re-
quires further research.

For this reason, with the help of numerical methods,
studies of simple atomic models composed of particles in-
teracting with the purely geometric potential are performed.
The subject of investigations are crystals of cubic symme-
try, into which the inclusions of particles with different di-
mensions are introduced. Earlier research of such models
in which the inclusions that simulate the introduction of an-
other material into the crystal, in the form of axially symmet-
ric channel [001] [49], can strongly enhance auxetic proper-
ties of the f.c.c. hard sphere crystal. The present study aims
to further these investigations by adding another level of con-
strains into the system. Namely, the particles forming inclu-
sions are connected into simple di-atomic rigid molecules.
The impact of these additional constrains on the elastic prop-
erties and the Poisson’s ratio is investigated.

II. The Model

In this work models of hard particles are considered. This
implies that particles interact with purely geometrical poten-
tial of the form:

ϕij =

{
∞, rij < σij ,

0 , rij ≥ σij ,
(1)

where rij is the distance between the centres of particles
i and j, σij = (σi+σj)/2, whereas σi, and σj are the diame-
ters of spheres i and j. The hard sphere (HS) potential is very
simple, yet not trivial interaction, as it actually represents
the short-range correlations that originate from the excluded
volume effects [50–52]. Being one of the fundamental inter-
actions used in the condensed matter physics [51, 53], it is
also the simplest one that can be used to study auxetic prop-
erties, as its thermodynamically stable crystalline phase, the
f.c.c. hard sphere crystal, is partially auxetic [48].

The models considered in this work are modified f.c.c.
crystals of N hard spheres. The modification consists of a re-
placement of certain spheres, whose centres fall into a se-
lected cylindrical volume, designated around selected crys-
talline axis, parallel to [001] direction. The replaced spheres,
further referred to as the inclusion spheres, differ from the
remaining ones in the value of their diameters. Whereas
the regular spheres forming the crystal have the diameter
equal to σ, the inclusion spheres have the diameter equal to
σ′ which can be smaller or greater than σ. The primary (non-
inclusion) spheres will be referred to as the matrix spheres.
The number of inclusion spheres, Ninc < N , changes with
the radius of the selected cylindrical volume. As the latter
increases from zero (the case when only spheres lying di-
rectly on the inclusion axis are replaced) the consecutive
sets of particles are gradually added to the inclusion. These
sets are referred to as consecutive coordination zones of par-
ticles around the inclusion axis. The larger the number of

coordination zones, the wider the nanochannel. The ratio
c = Ninc/N is called the concentration. The changes of
the elastic properties will be studied with respect to differ-
ent values of inclusion sphere diameters, thus the scaling
factor s = σ′/σ is introduced. The systems are studied
under different thermodynamic conditions with respect to
different values of the dimensionless pressure p∗ = βσ3p,
where β = 1/(kBT ), T is the temperature, and kB is the
Boltzmann constant. Periodic boundary conditions are used
in this study, thus one effectively obtains systems that con-
tain arrays of parallel inclusions oriented in [001] direction.
In contrast to studies performed in [49, 54], where such mod-
els have been investigated, in this study additional constrains
have been imposed on the system. Namely, the spheres form-
ing nanochannel inclusions have been randomly connected
in pairs, forming the simplest, di-atomic molecules, further
referred to as the dimers. The latter are considered rigid – the
distance between the centres of binded spheres (the length
L of the dimer) cannot change. Due to the random bind-
ing of inclusion spheres, the orientation of dimers within the
crystalline lattice is also random. Two cases are considered:
(i) when the length L of the dimer is equal to σ (regardless of
the value σ′), and (ii) when L = σ′. Visualization of studied
systems is presented in Fig. 1.

Fig. 1. Details of studied systems: a) nanochannels with one (C1)
and two (C2) coordination zones of spheres around selected inclu-

sion axis, and b) the two considered cases of dimer geometry

III. The Method

The calculations of elastic properties for the described
models have been carried out by means of computer sim-
ulations entrenched on the concept by Parrinello and Rah-
man [55, 56]. This approach has been implemented using
Monte Carlo (MC) method in the isobaric-isothermal en-
semble (NpT ) [50, 57], i.e. for a fixed number of particles,
and under constant pressure and temperature. The choice
of the method was dictated by the possibility to calculate
the complete elastic compliance tensor S. All the 21 in-
dependent elements of the symmetric, fourth-rank tensor
Sαβγδ are obtained from the shape fluctuations of the pe-
riodic box. The latter are directly related to the strain tensor
ε – a second-rank, symmetric tensor defined as [50, 56]:

ε =
1

2

(
h−1
p .h.h.h−1

p − I
)
. (2)
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In the above, I is the unit matrix of the dimensionality three
and hp ≡ ⟨h⟩ is the reference box matrix, i.e., the average
box matrix at equilibrium under the temperature T and the
pressure p or, in other words, under the dimensionless pres-
sure p∗. The fact that the system has the chance to optimize
its shape under arbitrary applied thermodynamic conditions
is one of the advantages of this approach. It is worth noting
that the symmetry of the box matrix allows one to avoid de-
formations that would result in rotation of the system during
simulations, which are unwanted in the calculation of elas-
tic properties. An expression describing the relation between
elastic strain tensor and the elastic compliance tensor has the
following form [50]:

Sαβγδ = βVp ⟨∆εαβ∆εγδ⟩ , (3)

where Vp = |det(hp)| is the average volume of the sys-
tem at equilibrium, under the dimensionless pressure p∗,
∆εαβ = εαβ − ⟨εαβ⟩, and ⟨εαβ⟩ is the ensemble average.
The Greek indices α, β, γ, δ indicate directions x, y, z in
Cartesian coordinate system. The general relation between
S and the Poisson’s ratio can be expressed in the following
form [58]:

νnm = −mαmβSαβγδnγnδ

nζnηSζηκλnκnλ
. (4)

Elastic properties of the considered models have been
determined numerically, with the use of MC simulations car-
ried out in the NpT ensemble (within the regime of constant
temperature and pressure). To study different thermody-
namic conditions, the pressure has been changed. The mod-
els were subjected to four different values of external (di-
mensionless) pressure p∗ = 50, 100, and 250. To increase
the efficiency of simulations, the lowest pressure has been
selected such as to avoid diffusion of particles within the
crystal structure. The size of the simulated samples was
N = 864, which corresponds to 6 × 6 × 6 f.c.c. unit cells.
The number of inclusion particles varied between 30 and 54,
depending on the size of the nanochannel. Elastic proper-
ties for each model and each value of p∗ were determined
for different diameters of inclusion spheres. The scaling fac-
tor σ′/σ was set from the ranges of 0.95 to 1.06. The re-
sults were averaged over fifty independent runs for each set
of parameters. The following section discusses only the re-
sults obtained for stable tetragonal systems. Thus, the pre-
sented range of σ′/σ for individual models and thermody-
namic conditions differ. Each simulation run took 107 MC
cycles. The first 106 of which was treated as the period when
the system reached thermodynamic equilibrium, and was re-
moved from calculations of averages. One Monte Carlo cy-
cle is understood as a period in which an attempt has been
made to move each of the particles once. Due to the fact
that the considered system is a mixture of spheres and non-
spherically symmetric dimers, independent of each transla-
tional trial move, a trial rotation of their longitudinal orienta-
tion (by small, random angles) is attempted. The acceptance
ratio for translational and rotational trial moves (calculated
separately) is kept at 40%.

IV. Results and Discussion

Introduction of an array of nanochannels oriented in
[001] direction has been proven to lower the symmetry of
the crystal from the cubic to tetragonal one [49, 54], the latter
being described by six independent matrix elements. Thus,
the elastic compliance matrix has the form:

S =


S11 S12 S23 0 0 0
· S11 S23 0 0 0
· · S33 0 0 0
· · · S44 0 0
· · · · S44 0
· · · · · S66

 . (5)

The S matrix is the Voigt representation [59] of elastic com-
pliance tensor defined in eq. (3).

To directly compare the results from this study with mod-
els studied earlier, the sizes of inclusions studied here match
the ones studied in [49, 54]. Concentration of inclusion parti-
cles is 3.47% and 6.25% for C1 and C2 systems respectively.
In Fig. 2, the values of elastic compliance matrix elements ,
see eq. (5) above, for the studied systems with dimer inclu-
sions (plotted in red and blue) have been plotted against the
results for the systems with inclusions of respective concen-
tration but filled only with spheres (plotted in gray colour).
The systems have been studied under three values of the re-
duced pressure p∗ = 50, 100, 250 (indicated in the figure).
To facilitate the comparison, the diagonal and off-diagonal
components have been plotted separately. For systems with
inclusions composed only of spheres, the value σ′/σ = 1
corresponds to pure f.c.c. crystal of hard spheres (a cubic
reference system). However, for systems containing dimer
inclusions this is not the case, as even for σ′/σ = 1 dimer
bonds introduce additional constrains to the crystal and the
structure is missing the 4-fold symmetry axis.

It has been shown that [49] single [001]-nanochannel in-
clusions significantly reduce the value of the Poisson’s ratio
at high values of σ′/σ (∼ 1.09). Unfortunately, no stable
systems at such high values of σ′/σ were obtained when
dimers were introduced into nanochannels. Thus, the pre-
sented reference results have been limited to the respec-
tive ranges of σ′/σ obtained for respective studied systems.
In Fig. 2 it can be seen that typically the diagonal compo-
nents of S (namely S11, S33, S44, and S66) are lower for
dimer inclusions, especially for wider (C2) nanochannels
and lower pressures. As one would expect, the introduction
of additional constraints to the system makes it more rigid
and less prone to volume changes. What is interesting is that
even such a small number of molecules in studied systems
(15 for C1 and 27 for C2) can exert noticeable hardening
effect over the f.c.c. crystal. In the case of the off-diagonal
compliance elements (S12, and S23) one can see almost no
impact of the dimers forming inclusions. Only a slight in-
crease of S23 can be observed at the lowest pressure for sys-
tems with L = σ′; for the definition of L see Fig. 1. How-
ever, an interesting fact can be observed when examining the
behaviour of S23 between C1 and C2 systems at the lowest
pressure p∗ = 50. Regardless of whether the dimers have
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Fig. 2. Elastic compliances Sij of tetragonal system with [001]-nanochannel inclusions filled with hard dimers (in colour) compared
with compliances of systems containing [001]-nanochannel inclusions filled with hard spheres (in gray). The pressure values for the
corresponding data sets have been marked with colour labels on the right. The data has been arranged in columns for systems where dimers
had length equal to σ (two columns on the left) and for systems where dimers had length equal to σ′ (right two columns). The columns

correspond to the given width of nanochannels, indicated at the top with Cx markers



The f.c.c. Crystals of Hard Spheres with an Array of [001]-Nanochannel Inclusions 41

Fig. 3. Elastic constants Bij of tetragonal system with [001]-nanochannel inclusions filled with hard dimers (in colour) compared with
compliances of systems containing [001]-nanochannel inclusions filled with hard spheres (in gray). The pressure values for the corre-
sponding data sets have been marked with colour labels on the right. The data has been arranged in columns for systems where dimers
had length equal to σ (two columns on the left) and for systems where dimers had length equal to σ′ (right two columns). The columns

correspond to the given width of nanochannels, indicated at the top with Cx markers
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Fig. 4. Comparison of extreme values of Poisson’s ratio of studied systems. Dimer systems (open symbols) are plotted against f.c.c. crystal
containing [001]-nanochannel inclusions filled only with spheres (filled symbols). The data has been divided into plots corresponding to
systems where dimers had length L = σ (left column) and L = σ′ (right column). Different sizes of nanochannels have been plotted in

rows: narrower, C1 nanochannel (top row) and wider, C2 nanochannel (bottom row)

the length L = σ or σ′, the S23 values for dimer C1 sys-
tems are very close to their spherical counterparts for lower
values of σ′/σ and tend to decrease when the latter increase.
Whereas, the C2 dimer systems exhibit higher values of S23

for the most of the studied values of σ′/σ, and only match
the reference data for the highest obtained values of inclu-
sion sphere diameters. Fig. 3 presents a similar comparison
for elastic constants. The latter are obtained by inversion of
elastic compliance matrix. In the figure it can be seen that,
systematically, values of B33 and B66 in systems contain-
ing dimers are higher than in respective systems with inclu-
sions containing only spheres. In the case of the wider C2
nanochannel for L = σ′, even a slight increase in B11 can
be noticed for all studied pressures, when σ′/σ > 1.

Fig. 4 presents the values for the extreme Poisson’s ratio
for studied systems with dimer nanochannels compared with
reference data [49, 54] for systems with respective inclusions
filled with spheres. It can be seen that regardless of the dimer
lengths L and the sizes of nanochannels the Poisson’s ratio
for dimer systems (open symbols) closely follow the results
for reference systems (smaller, filled symbols). Even when

σ′/σ = 1, which does not correspond to a cubic crystal,
one observes no noticeable difference in the Poisson’s ra-
tio. For higher values of σ′/σ at higher pressures the PR of
systems with dimers does increase slightly faster than in the
reference systems, but the differences are not significant.

V. Conclusions

In this work a comparison of elastic properties be-
tween different systems containing nanochannel inclusions
have been presented. Systems with nanochannel inclusions
oriented in [001] direction and filled with simple, rigid,
molecules interacting with hard potential have been com-
pared with systems containing inclusions with matching
shapes and sizes, but filled only by hard spheres. It has been
shown that whereas the dimer nanochannel inclusions do not
provide us with any additional leverage, when considering
the changes of Poisson’s ratio, over the pure spherical sys-
tems, they do have different impact on the values of elas-
tic compliances. It has been demonstrated that introducing
a small number of molecules, made of spheres with different
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diameters, into the f.c.c. crystal of hard spheres one is able
to modify its hardness and shear resistance without chang-
ing the Poisson’s ratio (with respect to the analogous system
without additional constrains imposed on the inclusion par-
ticles).
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