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Abstract: In 1984 Shuichi Nosé invented an isothermal mechanics designed to generate Gibbs’ canonical distribution for
the coordinates {q} and momenta {p} of classical N -body systems [1, 2]. His approach introduced an additional time-
scaling variable s that could speed up or slow down the {q, p} motion in such a way as to generate the Gaussian velocity
distribution ∝ e−p2/2mkT and the corresponding potential distribution, ∝ e−Φ(q)/kT . (For convenience here we choose
Boltzmann’s constant k and the particle mass m both equal to unity.) Soon William Hoover pointed out that Nosé’s approach
fails for the simple harmonic oscillator [3]. Rather than generating the entire Gaussian canonical oscillator distribution, the
Nosé-Hoover approach, which includes an additional friction coefficient ζ with distribution e−ζ2/2/

√
2π, generates only

a modest fractal chaotic sea, filling a small percentage of the canonical (q, p, ζ) distribution. In the decade that followed
this thermostatted work a handful of ergodic algorithms were developed in both three- and four-dimensional phase spaces.
These new approaches generated the entire canonical distribution, without holes. The 2024 Snook Prize problem is to study
the efficiency of several such algorithms, such as the five ergodic examples described here, so as to assess their relative
usefulness in attaining the canonical steady state for the harmonic oscillator. The 2024 Prize rewarding the best assessment
is United States $1000, half of it a gift from ourselves with the balance from the Poznań SuperComputer Center.
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I. The Nosé and Nosé-Hoover
Thermostatted Oscillators

Up until 1984 “molecular dynamics” meant the numeri-
cal simulation of many-body motion obeying classical isoen-
ergetic motion equations, usually Newton’s, Lagrange’s, or
Hamilton’s. On the other hand experimental data are often
based on temperature and pressure as independent variables,
isothermal and isobaric rather than isoenergetic. In pursuing
the goals of an isothermal or isothermal-isobaric classical
mechanics, temperature, the mean-squared one-dimensional
momentum, T ≡ ⟨p2⟩, is specified rather than a constant en-
ergy. It is natural to impose an isokinetic constraint like this

with integral feedback. Shuichi Nosé did so; he developed an
isokinetic-isothermal mechanics shaped by a “time-scaling”
variable s. Because s appeared squared in the denomina-
tor of Nosé’s motion equations, and was typically small,
Nosé’s equations were too stiff to be of practical value [3–5].
Hoover avoided this stiffness problem by following a smaller
“scaled momentum” (p/s) rather than (p/s2). The resulting
Nosé-Hoover motion equations for a harmonic oscillator be-
came [3–5]:

{ q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − T } [NH].

Numerical work using the classic fourth-order Runge-Kutta
integrator with timestep dt = 0.001 revealed an infi-
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nite variety of one-dimensional periodic orbits and two-
dimensional tori, with these features threading through
a three-dimensional chaotic sea [4]. These 1986 results were
various and most amazing, giving rise to hundreds of two-
dimensional computer-generated plots covering nearly all
of the horizontal surfaces in Professor Posch’s Vienna of-
fice at Boltzmanngasse 5. A decade later this variety grew
qualitatively when temperature varied with coordinate [6],
T (q) = 1 + ϵ tanh(q). The temperature gradient (dT/dq)
promotes heat flux, adding fractal distributions and dissipa-
tive one-dimensional limit cycles to the mix. With ϵ small
a chaotic fractal sea can result, depending upon choices of
the maximum temperature gradient (dT/dq)q=0 = ϵ and the
initial conditions. In no case were the solutions ergodic. In-
stead one-, or two-, or “fractal”-dimensional distributions,
with dimensionalities mostly between two and three, result.

In what follows we describe two ergodic Harmonic-
Oscillator algorithms in three-dimensional (q, p, ζ) space
and three such ergodic algorithms in four-dimensional
(q, p, ξ, ζ) space. This richness of approaches raises a ques-
tion

“Which of these approaches is best ?′′

Answering this question is the 2024 Snook Prize Problem.
Here we follow the algorithm descriptions by suggesting
several possible routes to answers.

II. Two Oscillator Algorithms Ergodic
in Three Dimensions

II. 1. The 0532 Oscillator Model, Ergodic
in Three Dimensions

Because a distribution is uniquely described by its vari-
ous moments,

⟨p2⟩ = T, ⟨p4⟩ = 3T 2, ⟨p6⟩ = 15T 3, ⟨p8⟩ = 105T 4, . . . ,

in the one-dimensional canonical case, it is “natural” to con-
sider algorithms with more than one moment controlled by
integral constraints. In fact, a brute-force Monte Carlo ex-
ploration of such models turned up the apparently ergodic
“0532 Model” motion equations [7]:

{ q̇ = p ; ṗ = −q − ζ(0.05p+ 0.32p3) ;

ζ̇ = 0.05(p2 − 1) + 0.32(p4 − 3p2) } [0532].

This model is an example of “weak control” where a sin-
gle control variable ζ controls a linear combination of two
Gaussian velocity moments, the second and the fourth.

II. 2. Bang-Bang Oscillator Control, Ergodic
in Three Dimensions

Tapias, Bravetti, and Sanders were awarded the 2016
Snook Prize for their discovery of a “Logistic Thermostat”.
They applied it to the harmonic-oscillator problem and con-
cluded that for small Q Gibbs’ canonical distribution was
reproduced [8]:

{ q̇ = p ; ṗ = −q − (T/Q) tanh(ζ/2Q)p ;

ζ̇ = p2 − T } [TBS].

Sprott [9] recognized that the small-Q limit can be written
in terms of the sign function sign(ζ), −1 for negative and
+1 for positive values of the friction coefficient ζ. The con-
trol force with just two values is also called “bang-bang”
control. Sprott discusses numerical implementation of this
novel control idea [9] using a hyperbolic tangent represen-
tation of the control, sign(ζ) ≃ tanh(500ζ) along with
an adaptive Runge-Kutta integrator, with the timestep dt
doubling or halving whenever the mean-squared difference
∆q2+∆p2+∆ζ2 between a single step with dt and two steps
with (dt/2) slips outside of a specified narrow error range.
Sprott’s figures establish the ergodicity of this computational
implementation of the TBS thermostat.

Three interesting and perhaps more elegant, four-
equation approaches include two independent control vari-
ables to implement quadratic or quartic constraints. We con-
sider the three algorithms in the following section.

III. Three Oscillator Algorithms Ergodic
in Four Dimensions

In an effort to achieve ergodicity, accessing the en-
tire Gibbs’ canonical distribution, a variety of approaches
were implemented in the 1990s. Simultaneous control of the
fourth moment using another friction coefficient ξ, so that
⟨p4⟩ = 3T 2, can generate the entire Gaussian distribution of
velocities. The momentum moments (1 for the second mo-
ment and three for the fourth) for a one-dimensional har-
monic oscillator, with q̇ = p ; ṗ = −q at unit temperature,
can be controlled with two “friction coefficients”, ξ and ζ,
in any one of the following three relatively simple ways.
Perhaps simplest is the simultaneous control of the second
and fourth moments of momentum as are imposed by the
Hoover-Holian motion equations [10]. Simultaneous control
of the second and fourth moments is realized by introducing
a second friction coefficient ξ.

{ q̇ = p ; ṗ = −q − ξp3 − ζp ;

ξ̇ = p4 − 3p2 ; ζ̇ = p2 − 1 } [HH(1)] [10].

Considerable stimulating and pioneering work by Bauer,
Bulgac, and Kusnezov resulted in generalizing linear combi-
nations of moments, including forces cubic in the friction co-
efficient. This higher power was found to improve ergodic-
ity. Perhaps the simplest special-case example is the doubly-
thermostatted BBK algorithm:

{ q̇ = p ; ṗ = −q − ξp3 − ζ3p ;

ξ̇ = p4 − 3p2 ; ζ̇ = p2 − 1 } [BBK(1)] [11−14].

In a simpler effort to achieve ergodicity, implementing
quadratic forms accessing the entire Gibbs’ canonical distri-
bution, Martyna, Klein, and Tuckerman introduced “chains”
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of thermostats in the 1990s. In the simplest of these a second
thermostat variable, ξ, is used to control the first, ζ. From the
standpoint of elegance the following two-thermostat chain is
probably the simplest four-equation approach to ergodicity
in a four-dimensional space [15]

{ q̇ = p ; ṗ = −q − ζp ; ξ̇ = ζ2 − 1 ;

ζ̇ = (p2 − 1− ξζ } [MKT(1)] [15].

In all three of these quadratic or cubic or quartic cases,
HH, BBK, and MKT, the stationary probability density is
Gaussian for (q, p, ξ). The stationary distribution is also
Gaussian in ζ for HH and MKT, but not for BBK. That latter
case includes e−ζ4/4 in the probability density, which could
be viewed as Gaussian in ζ2/

√
2.

To see that the full probability density f is stationary,
proportional to e−ζ4/4, it is only necessary to do a little al-
gebra (the continuity equation) to show that the net flux into
and out of an infinitesimal volume element ⊗ = dqdpdζ
leaves the probability density unchanged [3]:

(∂f/∂t) ≡ −∂(f q̇)/∂q − ∂(fṗ)/∂p+

−∂(f ξ̇)/∂ξ − ∂(f ζ̇)/∂ζ ≡ 0.

In these three example problems the distributions of
q and p can be extended from unit temperature to a general
temperature T while leaving ξ and ζ dimensionless. It is easy
to see that the modifications chosen here leave f stationary:

{ q̇ = p ; ṗ = −q − (ξp3/T )− ζp ; ξ̇ = (p4 − 3p2T )/T 2 ;

ζ̇ = (p2 − T )/T } [HH(T)] [10],

{ q̇ = p ; ṗ = −q − (ξp3/T )− ζ3p ; ξ̇ = (p4 − 3p2T )/T 2 ;

ζ̇ = (p2 − T )/T } [BBK(T)] [11−14],

{ q̇ = p ; ṗ = −q − ζp ; ξ̇ = ζ2 − 1 ;

ζ̇ = (p2 − T )/T − ξζ } [MKT(T)] [15].

In all three cases the probability density for the coordinate
q and momentum p are Gibbs’ canonical distribution with
Gaussian distributions for ζ and ξ :

f(q, p, ξ, ζ) ∝ e−(q2+p2)/2T e−ξ2/2[ e−ζ2/2 or e−ζ4/4 ].

Just as before the full distribution f(q, p, ξ, ζ) is stationary
provided that the flux in a four-dimensional volume element
leaves the probability density unchanged [3]:

∂(f q̇)/∂q + ∂(fṗ)/∂p+ ∂(f ξ̇)/∂ξ + ∂(f ζ̇)/∂ζ ≡ 0.

Just as before the acronyms (HH, BBK, MKT) indicate
the sources of the motion equations to papers by Hoover
and Holian; Bauer, Bulgac, Ju, and Kusnezov; and Martyna,
Klein, and Tuckerman. The BBK(T) equations have a quar-
tic distribution for ζ, e−ζ4/4. In all these cases prodigous nu-
merical work established the ergodicity of the motion equa-
tions, indicating that the long time limiting distribution, in-
dependent of the initial conditions, includes complete Gaus-
sian distributions for each of the four independent variables.

Fig. 1. Benchmark solution of the HH(T) equations with the ex-
plicit nonequilibrium T (q) detailed in Sec. I. 15-hour half-trillion-
timestep simulations. 805 651 p(q) points selected from every fifth
timestep with |ξ| and |ζ| simultaneously less that 0.005. ϵ = 0.25

so that T = 1 + (1/4) tanh(q) and dt = 0.001

Fig. 2. Benchmark solution of the BBK(T) equations with the
nonequilibrium T (q) detailed in Sec. I. 15-hour half-trillion-
timestep simulations. 787 126 p(q) points selected from every fifth
timestep with |ξ| and |ζ| simultaneously less that 0.005. ϵ = 0.25

so that T = 1 + (1/4) tanh(q) and dt = 0.001
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Fig. 3. Benchmark solution of the MKT(T) equations with the
nonequilibrium T (q) detailed in Sec. I. 15-hour half-trillion-
timestep simulations. 850 184 p(q) points selected from every
fifth timestep with both |ξ| and |ζ| simultaneously less that 0.005.

ϵ = 0.25 so that T = 1 + (1/4) tanh(q) and dt = 0.001

We benchmark the set of three nonequilibrium motion equa-
tions with an explicit temperature dependence in Figs. 1–3.
In each case we avoid displaying one-dimensional trajec-
tory segments near the ξ = ζ = 0 plane by skipping four
timesteps after each one displayed that satisfies |ξ| < 0.005
and |ζ| < 0.005. The three simulations in the figures all used
the initial conditions (q, p, ξ, ζ) = (0, 4, 0, 0).

IV. Estimating Phase-Space Mixing Rates

Straightforward computation should reveal the rate at
which particular thermostats generate the canonical distri-
bution. Moments of the oscillator coordinates and the fric-
tion coefficients from a few or many initial conditions are
straightforward to compare. For the specified temperature of
unity nearly all the measure of the various Gaussian dis-
tributions is confined to a hypercube with sidelength 12:
e−62/2 = 10−7.82 and e−64/4 = 10−141.

The Lyapunov exponents are another tool for measuring
the mean exponential spreading rate of probability in phase
space. Sample values for the largest Lyapunov exponent are
easy to find in the literature for the five ergodic thermostats
and the Nosé-Hoover sea.

Finally, the time-dependent entropy can be followed by
computing and extrapolating probability sums,

∑
P ln(P ),

over the three or four-dimensional phase spaces, just as in
the calculation of information dimension for the underly-
ing differential equations [16]. The figures show very nicely

that there are æsthetic sides to the study of these four-
dimensional thermostatted flows, mostly unexplored. We are
happy to consult with researchers interested in creating an
understanding of the relative Mixing Rates of the various
ergodic few-dimensional algorithms described here. In clos-
ing we thank Kris Wojciechowski for his encouragement and
support.
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William Graham Hoover completed his PhD in Chemical
Physics at the University of Michigan in 1961. After a post-
doctoral year at Duke University he settled into a career in
Physics at the Lawrence Livermore Laboratory and the Univer-
sity’s Department of Applied Science at the University of Califor-
nia at Davis/Livermore. His work was enriched by sabbaticals in
Australia, Austria, and Japan. His wife, Carol Griswold Hoover,
completed her PhD at Davis/Livermore in 1978. The Hoovers have
published hundreds of papers exploring nonequilibrium statistical
mechanics and published half a dozen books emphasizing progress
in computational statistical mechanics. The Hoovers moved from
California to Nevada in 2005, seeking, and finding, cleaner air,
lower taxes, beautiful scenery, and good neighbors. The Hoovers’
most recent book is a 2023 work with Clint Sprott (University of
Wisconsin at Madison), Elegant Simulations: From Simple Oscil-
lators to Many Body Systems, published by World Scientific (Sin-
gapore). Photo by Frannie Hoover Wilson – the Hoovers on 30
August 2023 at Ruby Valley.
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