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Subdiffusive Behavior in Crowded Environments:
Impact of Obstacle Mobility and Spatial Restrictions
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Abstract: Biological systems are generally dense reaction-diffusion systems. Therefore, determining the mechanism of
motion in such systems is of crucial importance in understanding their dynamics. Subdiffusive behavior is very common
in biological systems but its origin usually does not have a clear explanation. One attempt to explain this behavior is the
presence of randomly placed stationary obstacles in a medium filled with molecules of a certain medium. With an appro-
priate concentration of obstacles, the molecules of the medium cease to perform classic Brownian motions and motion
becomes subdiffusive. This mechanism seems to be well documented in both simulations and experiments. The question
arises whether a similar effect can be obtained in systems where obstacles are not stationary, but their mobility is drasti-
cally reduced comparing to medium molecules, or the reduction in mobility is combined with a limitation in movement
(the movement of obstacles resembles, for example, the Orestein-Ulhenbeck movement). Is it possible to observe subdif-
fusion behavior in such a situation? We try to answer this question on the basis of Monte Carlo simulations based on the
Dynamic Lattice Liquid (DLL) model. Based on the concept of cooperative movements, this model has a unique feature
that allows one to take into account the correlation of movements between the elements that make up the examined system,
which is important in the case of high densities due to the strict correlation of movements between the moving elements.
The tests concern systems where obstacles were single beads whose mobility was changed with additional restrictions im-
posed on the displacement. It was shown that no entrapment of medium molecules was observed and a slight deviation from
normal diffusion was also shown.
Key words: anomalous diffusion, lattice model, macromolecular crowding, Monte Carlo method

I. Introduction

A subdiffusive behavior can be explained theoretically
using three widely accepted scenarios. The first one, con-
sidered to be the simplest, is “fractional Brownian motion”,
which consists of generalizing Brownian motions, where we
apply random changes of positions that are not independent
as in classic Brownian motions but show long-term correla-

tions [1–5]. The second frequently used scenario is the so-
called “continuous-time random walk” (CTRW) based on
power distribution of waiting times for movement [6–10].
The third scenario is the only one that provides a clear pic-
ture of the appearance of subdiffusive behavior in a system.
In this model, it is assumed that a certain part of the sys-
tem is filled with randomly placed stationary objects of var-
ious sizes and shapes called obstacles and elements of the
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medium move between them [11–15]. The basic quantity
commonly used in the description of dynamics in this type
of systems is the mean square of the displacement (MSD),
which is defined as follows:

〈
∆r2 (t)

〉
=

1

n

n∑
i=1

[ri (t)− ri (0)]
2
, (1)

where ri (t) is a vector describing the position of the ith ele-
ment after time t relative to the initial position ri (0). Using
the Einstein’s relation, the diffusion coefficient D can be de-
termined as follows:〈

∆r2 (t)
〉
= 4Dt, t → ∞. (2)

The formula (2) is valid for normal (Fickian) diffusion, i.e.,
when the MSD depends linearly on time. In systems with
anomalous diffusion, the dependency of the MSD on time
has the form: 〈

∆r2
〉
∼ tα, (3)

with the exponent α ̸= 1. Subdiffusive motion corresponds
to values of α lower than 1. According to the theory, e.g.,
on a triangular lattice, where obstacles correspond to single
lattice nodes, the percolation threshold is 0.5, i.e., half of the
nodes are occupied by obstacles, and the exponent α takes
the value 0.659 [11]. One should remember that the theoreti-
cal values like the exponent α are not universal because, first
of all, the location of the percolation threshold strongly de-
pends on the size of the obstacles [16, 17]. Secondly, corre-
lation (or lack of it) plays an important role in the movement
of the studied elements [18]. Recently, two systems based
on a triangular lattice with fixed matrix of impenetrable ob-
stacles were examined and compared [19]. In the first one
a single element moved between obstacles and did not inter-
act with other elements. In such a case, the dynamic perco-
lation threshold, i.e., the threshold at which the movement
becomes restricted, coincides exactly with the percolation
threshold resulting from the theory. Moreover, the exponent
α also shows a good agreement with the theory. The situa-
tion changes dramatically when the movements of individual
elements are correlated with each other, as is the case of real
dense systems occurring in the nature. In this case, the Dy-
namic Lattice Liquid (DLL) algorithm based on the concept
of cooperative movements, taking into account the strict cor-
relation between the movements of molecules in the liquid,
indicates the dynamic percolation point corresponding to the
concentration of obstacles close to 0.38 and the exponent
α ≈ 0.38. Such a low value of the exponent α is not sur-
prising because such values are obtained in real experiments
[20, 21].

The assumption of immobility of obstacles is very conve-
nient from the point of view of simulation practice; however,
a question arises what the diffusion will look like in a system
where the obstacles are not stationary and we let them move
slightly. Also, what happens if the movement of obstacles
is spatially constrained? A partial answer to this question
was recently given and it was confirmed that these mobile

obstacles lead to the temporary subdifussive behavior only
[19]. In the present work, we study the diffusion in a sys-
tem in which the obstacles correspond to single nodes of the
lattice, whose mobility is limited. Additionally, a condition
limiting their movement is imposed on them – the movement
of obstacles resembles the Orestein-Ulhenbeck movement
[22]. We performed Monte Carlo simulations employing the
aforementioned DLL model.

II. The Models and the Simulation Methods

The application of the DLL model and simulation
method in the case of a crowded environment was described
in detail in [23] and therefore we give only a brief descrip-
tion here. The DLL model fulfills the continuity equation
and provides the correlated movements of molecules as in
a real liquid. Moreover, dynamic properties, which it pro-
duced, were in good agreement with those established ex-
perimentally and theoretically for liquids [24, 25]. The sim-
ulation is performed at the highest possible density, which
cannot be obtained using other simulation methods: Molec-
ular Dynamics studies of models with a matrix of immobi-
lized obstacles were usually performed at the concentration
up to 0.6 [14, 26, 27]. The DLL model is basing on the con-
cept of strictly cooperative motion of molecules in dense sys-
tems. In this model, molecule vibrate near quasi-localized
points (remaining at a given place) sometimes being in-
volved in a motion correlated with their neighbors, which
results in their translations [24–26]. This picture of a motion
in a molecular liquid is commonly accepted and consistent
with a picture obtained by Molecular Dynamics simulations
of dense hard disks and Lennard-Jones systems [28, 29].
The model was coarse-grained where identical beads repre-
sented medium molecules or obstacles. The positions of the
objects were limited to vertices of a triangular lattice and all
lattice sites in the system were occupied by beads. Objects
do not exhibit any simple translational motion because all
neighboring lattice sites are occupied. But the DLL model
allowed determining the conditions required for collective
molecular translations. Each displacement of an object from
its position is considered as an attempt of a movement to
a neighboring lattice site along lattice vectors.

Cooperative rearrangements in the DLL model on the lat-
tice have a form of closed loops of displacements (Fig. 1).
Objects that did not belong to a closed loop consisting of
at least three objects were immobilized at a given time step.
An element chosen randomly as an immobile obstacle can-
not take place in a cooperative loop during the entire simula-
tion run. A time unit corresponds to an attempt to change po-
sitions of all objects in the system simultaneously. The sim-
ulation scheme of the DLL algorithm presented in Fig. 1 is
the following:

1. A random vector field of motion attempts with a vec-
tor assigned to each bead and pointed towards one of
the nearest-neighboring lattice sites was generated.

2. Groups of vectors coinciding with contours of closed
continuous paths (loops), showing ways of possible
cooperative rearrangements were selected.
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3. Objects (beads) belonging to these closed paths
(loops) were rearranged along these paths by shifting
them to the neighboring sites. It should be underlined
that the algorithm based on the above assumptions was
strictly parallel.

Fig. 1. Illustration of a vector field representing attempts of molec-
ular displacements towards neighboring lattice sites as assumed in
the DLL model. The marked areas represent various local situa-
tions: (1) elements (yellow) try to move in the opposite direction
(unsuccessful attempts), (2) an attempt of motion starts from an el-
ement (violet) so that, when moved, it would not be replaced by
any of its neighbors (unsuccessful attempts), and (3) each green el-

ement replaces one of its neighbors (successful attempts)

The simulations were carried out in the simulation box
L × L where L = 256 with periodic boundary conditions
employed along the x and y axes. It was previously shown
that if the system is larger than 64 × 64, the statistic of co-
operative loops of displacement does not depend on the size
of the Monte Carlo box [24]. A single simulation trajectory
consisted usually of ca. 108 Monte Carlo simulation steps.
The simulations were repeated at least 10 times and each
simulation run was performed for different random matrices
of obstacles (about 30 different matrices). The results were
averaged over all runs for a given set of input parameters.
The concentration of obstacles (each having a size of a lat-
tice node) was defined as the ratio of the sites occupied by
obstacles to the total number of lattice sites in the system:
c = N/L2, where N is the number of obstacles in the sys-
tem.

There were three types of obstacles considered in this
work:

1. Stationary obstacles that correspond to disabled ele-
ments in a network node, i.e., these elements are im-
mobilized.

2. Obstacles that move with reduced mobility. This re-
duction was imposed as a probability of motion of
an element and was varied between 1 (obstacles were
as mobile as medium molecules) and 10−5 (obsta-
cles were 5 orders of magnitude slower than medium
molecules).

3. Obstacles that move with reduced mobility (the same
reductions as given above) and at the same time their
motion was limited in space. These obstacles were al-
lowed to move by one or two lattice nodes (to neigh-
bors or to the second neighbor on the lattice).

III. Results and Discussion

The main factors that affect the type of transport in the
system are the topology of the system and the conditions in
which the transport takes place. Therefore, it is very impor-
tant whether we take into account the obvious fact that in
dense systems such as liquids the movement of elements is
closely correlated or not. In our case, the movement of ele-
ments in all cases is closely correlated due to the conditions
imposed by the DLL algorithm. Before proceeding to the de-
scription and discussion of the movement of the medium ele-
ments, let us focus on the different variants of the movement
of obstacles. Fig. 2 presents a comparison of the movement
of obstacles when their mobility has been drastically limited
and additional restrictions have been imposed on their spatial
movement. It is worth noting that the motion of slowed-down
obstacles (black lines) has a Brownian character in the con-
sidered time interval. The movement of obstacles with addi-
tional spatial constraints (blue and red lines) largely retains
the character of slow-moving obstacles, then tends to a con-
stant value, which is related to the location of the movement.

Fig. 2. MSD of molecules in the system with obstacles whose mo-
bility has been reduced 104 times. The black color corresponds
to the system where the spatial movement of obstacles has not
been restricted. The red color corresponds to the system where the
movement of obstacles has been restricted to two lattice constants.
The blue color corresponds to the system where the movement has
been restricted to one lattice constant. The concentration of obsta-

cles is given in the inset

The motion of two-dimensional liquid molecules with
close correlation of moving elements in the presence of sta-
tionary obstacles was presented in [18]. It was found that
the dynamic percolation threshold appears at a concentra-
tion of obstacles c = 0.38 where the obstacles were single
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Fig. 3. MSD (a) and MSD/time (b) for molecules of the medium for the concentration of obstacles c = 0.5. The case of obstacles with the
mobility reduced 101–105 times and spatially limited to one lattice constant compared to the case where the obstacles are fixed

beads immobilized in lattice nodes. Fig. 3a shows MSD of
liquid molecules for different mobility of obstacles (the mo-
bility varies from full mobility to the reduced one by the fac-
tor 105; additionally, results for systems with obstacles that
are completely immobilized are included into this figure)
with the concentration of obstacles c = 0.5. A spatial con-
straint was imposed on movable obstacles that they can move
randomly according to the conditions of the DLL algorithm
for a distance of one lattice constant relative to the initial
position. This concentration of obstacles corresponds to the
percolation threshold of beads on a triangular lattice, which
is considerably higher than the concentration corresponding
to the dynamic percolation (0.38) obtained as a result of sim-
ulations employing the DLL algorithm [11, 18]. Therefore,
in a system with stationary obstacles above this threshold,
the flow is completely blocked and the movement of the
medium molecules is localized and limited to a small area.
The curve that corresponds to the situation where we con-
sider obstacles with additional spatial constraints for which
mobility has not been reduced, is very similar to the case
where obstacles are not present at all. The curves that de-
scribe MSD in the case of limiting mobility from 100 to 105

times show a similar character, i.e., we can distinguish three
short regions in which we observe a Brownian motion corre-
sponding to local motion. One can also see regions where the
diffusion slows down and regions where the diffusion (over
a long period of time) exhibit an apparent tendency to return
to the Brownian diffusion. The MSD/t curves presented in
Fig. 3b allow a better capture of these regions.

The image presented above, obtained on the basis of the
MSD analysis, can be confirmed by the behavior of the po-
sition correlation function which we define as follows:

ρ (t) =
1

n

n∑
i=1

mi (0)mi (t) , (4)

where mi (0) = 1 and mi (t) = 1 or 0, depending whether
or not the ith bead occupied its original position (at t = 0)
and at a given time t, respectively.

In Fig. 4 we present the position correlation function of
the molecules of the medium for the concentration of obsta-
cles c = 0.5. Here, one can distinguish three regions of be-
havior: the first, in which the value of the correlation func-
tion decreases relatively quickly, the second, during which
the arrested elements of the medium wait for the possibility
of movement, and the third, in which the correlation function
disappears completely. Some controversy may arise from the
fact that we observe such a big difference in the movement
in the first region between the variant where the mobility of
obstacles was not reduced and the situation where the mobil-
ity of obstacles was reduced 102 times or more. Moreover,
these curves are very similar in the initial region and there
is no clear difference between them and the curve describing
the behavior for stationary obstacles. One can easily explain
this behavior taking into consideration the assumptions of
the DLL algorithm. The probability of taking part in a co-
operative loop in a system without obstacles is about 0.09,
which corresponds to an average of one movement of any
element in about 11 time steps. If we reduce the mobility of
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an element (in our case, obstacles which move without con-
straints) 102 times or more they are locally almost immobile.
Therefore, an appropriate time has to elapse, and this time
corresponds to the diffusion slowdown.

Fig. 4. A comparison of the position correlation function of the
molecules of the medium for the concentration of obstacles c =
= 0.5. The case of obstacles with the mobility reduced 101–105

times and spatially limited to one lattice constant compared to the
case where the obstacles are fixed

In order to fully analyze the impact of a slow movement
of obstacles on the behavior of the medium’s elements, let
us consider a situation in which the mobility of obstacles is
drastically limited by the factor 105 along with a simultane-
ous spatial limitation as in the case considered previously,
i.e., an obstacle can randomly move a distance of one lat-
tice constant (relative to their initial position). This proce-
dure is due to the fact that the observed effects are very sub-
tle and reveal themselves in situations of drastic parameter
limitations. Moreover, a very long observation time is re-
quired here. Fig. 5a shows a comparison of the MSD of the
medium elements when the obstacles are stationary and the
movement of the obstacles has been restricted as described
above.

When the concentration of obstacles does not exceed
0.3, we observe similar behavior in both cases. The situation
starts to change after exceeding this concentration of what
can be related to the fact that we are approaching the dy-
namic percolation threshold, which in the case of the DLL
model is 0.38. For the concentration c = 0.38, there is
a clear difference between both cases. The time of staying
in the diffusion slowing-down region increases dramatically.
While in the case of stationary obstacles we observe a sub-
diffusive motion, in the case of moving obstacles diffusion
remains normal for a long time of observation. The tran-
sition to the anomalous diffusion seems to be observed for
higher concentrations of moving traps above the concentra-
tion 0.7, which is clearly shown in Fig. 5a. A weak subdiffu-

Fig. 5. MSD (a) and MSD/time (b) for molecules of the medium. The case where the mobility of obstacles has been reduced 105 times
and spatially limited to one lattice constant network (solid symbols) and the case where obstacles are immobile (open symbols). The con-

centrations of obstacles are given in the inset
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sive behavior seems to be clearly visible for concentrations
of moving traps 0.8 and 0.9 which is much more than ob-
tained within the frame of the DLL model (0.38) or given by
the theory (0.5). Moreover, the exponent α for these cases
is close to 0.72, which exceeds the exponent α for the DLL
model with immobile obstacles (between 0.37 and 0.38) or
predicted in the classic case of stationary obstacles (0.659).
The MSD/t curves presented in Fig. 5b allow a better capture
of the regions.

From the above considerations, one can conclude that the
subdiffusive effect that we observe is very subtle. In order
to determine the actual state of affairs, let us use the so-
called non-gaussian parameter α2 (t). It is a sensitive quan-
tity which allows one to recognize the character of the mo-
tion and it is defined as [30, 31]:

α2 (t) =

〈
∆r4 (t)

〉
2 ⟨∆r2 (t)⟩2

− 1. (5)

This parameter takes values close to zero in the case of nor-
mal (Fickian) diffusion and becomes significantly greater
than zero in the case of anomalous diffusion.

Fig. 6. The non-gaussian parameter α2 (t) for long observation
times. The case of mobile obstacles with mobility reduced 105

times. The concentrations of obstacles are given in the inset

Fig. 6 shows α2 (t) for long observation times in the case
of moving obstacles (mobility reduced 105 times) and for
some concentrations between 0.5 and 0.9. The presented re-
sults indicate that the curves corresponding to concentrations
of 0.5–0.7 for long observation times show the tendency to
return to the normal diffusion. Only the curve correspond-
ing to the concentration 0.9 shows values clearly greater than
zero (although these values are not too large) with a tendency
to stabilize. The results obtained from studies of the position
correlation function indicate that in systems with even very
low mobility of obstacles and even at high values of their
concentration we do not observe the phenomenon of entrap-
ment of medium molecules.

Fig. 7 shows a comparison of the position correlation
function for the case of stationary and moving obstacles,
which was considered above, i.e., the mobility of obstacles
is reduced 105 times with simultaneous spatial limitation to
one lattice constant. In all cases, there is a clear tendency
towards complete relaxation.

Fig. 7. The position correlation function. The case of fixed obstacles
(open symbols) and mobile obstacles with mobility reduced 105

times (solid symbols). The concentrations of obstacles are given in
the inset

Taking into account the presented results, it can be con-
cluded that in the case of moving obstacles, even by intro-
ducing drastic restrictions on their mobility and spatial dis-
placement restrictions, we can observe no signs of entrap-
ment of medium molecules with a slight deviation from nor-
mal diffusion but this effect is generally weak. In the case
of limiting the mobility of obstacles with the simultaneous
introduction of restrictions on their spatial movement, the
main factors generating the dynamics of the system are the
concentration of obstacles, their mobility, their position re-
laxation time, i.e., the time after which the obstacle returns
to its initial position.

Finally, systems with different concentrations of obsta-
cles were compared, in which the mobility of obstacles was
significantly reduced (104 times) but no spatial restrictions
were introduced. The mobility was limited in the same way
as mentioned above, and the spatial restriction allows for
random movement around the starting point no more than
two lattice constants (longer relaxation time than when the
obstacle oscillates only over a distance of one constant).
The results are presented in Fig. 8a and MSD/t curves are
shown in Fig. 8b for a better capture of regions of normal
and sudiffusive diffusion. The obtained results indicate that
in all cases, on a time scale corresponding to times shorter
than the time after which the molecules of the medium leave
the region of the diffusion slowdown, the elements move in
the same way, regardless of the imposed conditions. After
exiting the diffusion slowdown region, differences in behav-
ior can be noticed depending on the case under considera-
tion. And so, for the variant in which no spatial constraints
have been imposed, we observe a return to Fickian diffu-
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Fig. 8. MSD (a) and MSD/time (b) for molecules of the medium where their mobility has been reduced 104 times. The case of obstacles
spatially limited to one (blue) and two (red) lattice constant and the case of obstacles with no spatial limitation (black). The concentrations

of obstacles are given in the inset

Fig. 9. Position correlation function for molecules of the medium
where their mobility has been reduced 104 times. The case of ob-
stacles spatially limited to one (blue) and two (red) lattice constant
and the case of obstacles with no spatial limitation (black). The con-

centrations of obstacles are given in the inset

sion (black curves parallel to the time axis are clearly vis-
ible). In the case when the spatial constraint is two lattice
constants, a certain deviation is visible after a long observa-
tion time, especially for the high concentrations of obstacles.
The strongest effect can be observed in the third case, i.e.,

where obstacles can be moved by one lattice constant only.
In this case, with the increase in the concentration of obsta-
cles after exceeding the concentration corresponding to the
percolation threshold (determined for the DLL model), we
observe an increasingly clear deviation from a normal dif-
fusion behavior. For long times and high concentrations, the
exponent α is close to 0.77, which is slightly more than in
the case considered in Fig. 5. It has to be stressed, however,
that the nature of these differences is very subtle and requires
a very long observation time.

The fact that the differences in cases where obstacles
with very limited mobility are additionally imposed with
spatial constraints are very subtle is confirmed by the be-
havior of the position relaxation function shown in Fig. 9.
It can be observed that regardless of the considered variant
or concentration of obstacles, the curves describing the posi-
tion relaxation functions are practically indistinguishable.

IV. Conclusions

Computer simulations of a motion of liquid molecules in
crowded environments in two-dimensions were carried out.
The Dynamic Lattice Liquid model was used for these sim-
ulations because of its ability to work at high densities em-
ploying cooperative motion objects in the system. The model
was coarse-grained, molecules were placed in a triangular
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lattice, and the system was athermal. We studied the follow-
ing models of crowded environments: immobilized obsta-
cles, mobile obstacles and mobile obstacles with their mo-
tion considerably confined (all obstacles were of the size of
solvent molecules). The influence of the molecular transport
and the analysis of critical parameters in most of these sys-
tems were already carried out and therefore we have tried to
compare the diffusion processes in such systems looking for
the conditions of appearance of anomalous diffusion.

The dynamics of liquid molecules and obstacles was
studied by the analysis of mean-square displacement and
position autocorrelation function. In the case of immobile
obstacles transient subdiffusive motion appears but finally
a normal diffusion is recovered. But when the concentra-
tion of obstacles exceeds the percolation threshold the mo-
tion becomes limited. If obstacles are allowed to move, con-
siderably slower than the molecules of medium, even a few
orders of magnitude, subdiffusion occurs, but then normal
diffusion is restored and the anomalous diffusion was tran-
sient in all cases. The slower the obstacles, the longer the
subdiffusion region lasts. The confinement of mobile obsta-
cles, i.e., imposing a spatial restriction on their movement
does not change much in the picture of the dynamics of the
studied systems. However, it should be noted that for high
mobility constraints (probability of movement reduced by
104–105 times) and high concentrations of obstacles (above
0.70) with the spatial constraint, a weak subdiffusive behav-
ior is observed, where the exponent α < 0.78. Moreover, as
obstacle mobility decreases, this exponent decreases slightly.
This suggests that more pronounced subdiffusive behavior is
to be expected with even lowered mobility. The above results
can be relevant for studies of diffusion in biological systems
where heterogenous media commonly occur and affect bi-
ological functions, e.g., in cells or lipid membranes. To get
a better description of these processes more realistic models
which take into account interactions and chemical reactions
have to be developed.
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