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Abstract: 25 years ago the June 1998 Focus Issue of “Chaos” described the proceedings of a workshop meeting held in Bu-
dapest and called “Chaos and Irreversibility”, by the organizers, T. Tél, P. Gaspard, and G. Nicolis. These editors organized
the meeting and the proceedings’ issue. They emphasized the importance of fractal structures and Lyapunov instability
to modelling nonequilibrium steady states. Several papers concerning maps were presented. Ronald Fox considered the
entropy of the incompressible Baker Map B(x, y), shown here in Fig. 1. He found that the limiting probability density
after many applications of the map is ambiguous, depending upon the way the limit is approached. Harald Posch and Bill
Hoover considered a time-reversible version of a compressible Baker Map, with the compressibility modelling thermostat-
ting. Now, 25 years later, we have uncovered a similar ambiguity, with the information dimension of the probability density
giving one value from pointwise averaging and a different one with areawise averaging. Goldstein, Lebowitz, and Sinai
appear to consider similar ambiguities. Tasaki, Gilbert, and Dorfman note that the Baker Map probability density is singu-
lar everywhere, though integrable over the fractal y coordinate. Breymann, Tél, and Vollmer considered the concatenation
of Baker Maps into MultiBaker Maps, as a step toward measuring spatial transport with dynamical systems. The present
authors have worked on Baker Maps ever since the 1997 Budapest meeting described in “Chaos”. This paper provides
a number of computational benchmark simulations of “Generalized Baker Maps” (where the compressibility of the Map is
varied or “generalized”) as described by Kumiĉák in 2005.
Key words: random walk, fractal, Baker Map, information dimension, Kaplan-Yorke dimension

I. Numerical Simulations of Many-Body Dynamics

Statistical mechanics, developed in the 19th and early
20th centuries by Boltzmann in Austria, Gibbs in the United
States, and Maxwell in England, provides a formalism giving
macroscopic thermodynamic properties in terms of micro-
scopic (q, p) phase-space trajectory properties. But the com-
plexity of systems more complicated than the ideal gas or
the harmonic crystal prevented much progress on “realistic”
many-body problems in particle or astrophysical dynamics.
By the mid-20th century computers played a huge role in
designing weapons for World War II. Their ability to solve
complex problems quickly caught the attention of physicists,

mathematicians, engineers, chemists, . . . , all of whom were
stymied by the complexity of their nonlinear equations in
many variables. After the war computers could be applied to
many of the “hard problems” that had accumulated as fruits
of the scientific revolution. Computer simulations of many-
body problems were developed at universities and national
laboratories worldwide. Straightforward applications of par-
ticle mechanics and statistical mechanics stimulated inter-
national collaborations long before email could make such
cooperation routine.

As a result of 1980s and 1990s workshop and confer-
ence meetings in Berlin, Budapest, Gmunden, New Hamp-
shire, Orsay, Warwick, and Zakopane, Bill, with half a dozen
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colleagues, developed several one-body toy-model small
systems designed to shed light on the simulation of (irre-
versible) nonequilibrium systems with time-reversible equa-
tions of motion [1–5]. Among the research goals of these
scientists were the resolutions of two paradoxes which
had puzzled Maxwell and Boltzmann and their followers,
Loschmidt’s, a consequence of time-reversible motion equa-
tions:

“How can time-reversible motion equations
simulate irreversible processes?”

and Zermélo’s, a consequence of the Poincaré recurrence of
any dynamical Hamiltonian state in a bounded portion of its
(q, p) phase space:

“How can entropy only increase if the initial
state will inevitably recur?”

Applications of two computational innovations com-
bined to provide resolutions of these paradoxes. In the mid-
1980s Shuichi Nosé developed a revolutionary variant of
Hamiltonian dynamics [6, 7]. He introduced a control vari-
able, his “time-scaling variable”, influencing the kinetic tem-
perature. This modified dynamics, still time-reversible, en-
abled the simulation of systems at a specified kinetic tem-
perature rather than at constant energy. This work was im-
proved and simplified by Bill [8, 9] as a result of conver-
sations he and Shuichi had near the Notre Dame Cathedral
in 1984. They had met by chance at a train station in Paris,
a few days prior to a CECAM workshop in Orsay. By 1986
Nosé-Hoover dynamics was generalized to the simulation of
nonequilibrium steady states. Bill, along with half a dozen
colleagues, developed three toy-model problems illustrating
applications of the new mechanics’ temperature control to
three nonequilibrium systems: the Galton Board [2], the Gal-
ton Staircase [1, 3], and, a decade later, the Conducting Os-
cillator [5]. The three problem types all exhibited irreversible
chaotic solutions (exponentially sensitive to perturbations)
despite the deterministic time-reversibility of the dynamics.
(1) The Galton Board problem follows the field-driven isoki-
netic motion of a hard disk through a fixed lattice of iden-
tical hard-disk scatterers. The resulting phase-space distri-
bution is fractal [2, 10], a distribution with a nonintegral
topological dimensionality. (2) The Galton Staircase prob-
lem likewise follows a thermostatted field-driven motion, but
of a unit-mass point with momentum p in a sinusoidal poten-
tial. The equations of motion for the Galton Staircase are

q̇ = p ; ṗ = F − sin(q)− ζp ; ζ̇ = p2 − T .

(3) The Conducting Oscillator problem [5] simulates the mo-
tion of a heat-conducting harmonic oscillator thermostat-
ted with a coordinate-dependent temperature T (q) = 1 +
+ϵ tanh(q).

All three of these Nosé-Hoover modifications of Hamil-
tonian flows can generate fractal distributions and do also
obey the phase-space continuity equation expressing the co-
moving conservation of probability fdqdpdζ = f⊗. Here
f is the probability density and ⊗ is an infinitesimal phase
volume element:

(ḟ/f) = −(⊗̇/⊗) = −[(∂q̇/∂q) + (∂ṗ/∂p) + (∂ζ̇/∂ζ)] =

= ζ = (Ṡ/k) .

Gibbs’ and Boltzmann’s identification of entropy with
⟨−k ln f⟩ identifies the Nosé-Hoover friction coefficient
ζ with entropy production Ṡ. This is a useful result in in-
terpreting nonequilibrium simulations including the instan-
taneous heat transfer to the external heat baths represented
by the temperature-control variable ζ = (Ṡ/k). Here k is
Boltzmann’s constant. For convenience we usually choose it
equal to unity.

In these three deterministic time-reversible models ther-
mostatting is implemented by integral feedback forces im-
posing a given kinetic temperature ⟨ p2 ⟩, with control forces
{−ζp} linear in the moving particle’s momentum p. These
model systems are sufficiently simple that their phase-space
distributions can be analyzed precisely [10, 11] to determine
the power-law variation of phase-space bin probabilities P(δ)
with bin size δ. The resulting box-counting and correlation
dimensionalities of the fractal distributions describe the scal-
ing of the zeroth and second powers of bin probabilities {P}.
The information dimension is logarithmic. It corresponds to
⟨ln(P)⟩/ ln(δ), giving the powerlaw variation of the density
of points with respect to the bin size. Information dimen-
sion arises naturally in analyzing thermostatted mechanics
and is the focus of our attention here. One-, two-, and three-
dimensional objects in a three-dimensional space have prob-
abilities varying as the first, second, and third powers of the
bin size δ. Accordingly, the definition of the information di-
mension, DI = ⟨ln(P)⟩/ ln(δ), is a natural generalization
of dimension from the integers 1, 2, 3 to a continuously
variable “fractal” value. In the special toy-model cases stud-

Fig. 1. The two-panel B(x, y) (at left) and N2(q, p) (at right)
versions of the compressible nonequilibrium Baker Map. For
convenience the mapping is illustrated in the unit square,
0 < x, y < 1 at the left and in a 2 × 2 diamond at the right with
−
√
2 < q, p < +

√
2. In both cases the mapping T , not to be con-

fused with temperature, changes the sign of the vertical coordi-
nate, T (±x,±y) = (±x,∓y) at the left and T (±q,±p) =
= (±q,∓p) at the right. Note that the bottom leftmost config-
uration differs from a time-reversed image of the top left im-
age, showing that map B is not time-reversible. The 45 de-
gree rotated mapping N2 at the right satisfies time reversibil-
ity N2 · T ·N2 · T (q, p) = I(q, p) = (q, p), and so is a more
faithful analog of time-reversible classical mechanics. I is the

identity mapping
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ied in the 1980s and 1990s most distributions turned out to
have anisotropic fractional rather than integral dimensional-
ities, characteristic of nonequilibrium steady states. Under
some conditions one-dimensional dissipative limit cycles re-
sulted [5].

II. Time-Reversible Chaos
and the Two-Dimensional Baker Map

Solutions of Hamilton’s or Lagrange’s or Newton’s or
Nosé-Hoover’s motion equations are all “time-reversible”.
A transparent example is the formulation and solution of the
one-dimensional harmonic oscillator problem with unit mass
and force constant;

q̇ = p ; ṗ = −q → q̈ = −q [Hamiltonian Oscillator] ;

ẍ = −x(t) [Newtonian Oscillator] ;

ẍ = −x(t)− ζẋ ; ζ̇ = ẋ2 − T [Nosé-Hoover Oscillator] .

Given initial values of the coordinate, x or q, at the cur-
rent and previous times, x(t) and x(t − dt), one can inte-
grate either forward or backward, extending the coordinates’
time series as far into the future or past as desired. Time re-
versibility can be confirmed by integrating for one timestep,
changing the sign of dt and integrating (backward in time)
for one step, and then again changing the time, returning to
the initial values of x(t), ẋ(t), ζ(t) or (q(t), p(t)). Adding
a Nosé-Hoover thermostatting force −ζp the dynamics re-
tains time-reversibility so long as ζ changes sign in the re-
versed motion, behaving like a momentum variable [9].

Studies of chaotic flows (with the exponential growth of
small perturbations) require at least three dynamical vari-
ables. In a bounded region of one-or-two-dimensional space
a deterministic trajectory must eventually either stop or trace
out a periodic orbit, and so cannot be chaotic. Graphics can
be simplified by considering projections or cross-sections
of three-dimensional flows. A little reflection shows that
cross-sections of flows are equivalent to maps, with deter-
ministic finite jumps from one phase-space point to another

Fig. 2. The mirror symmetry of the Baker map implies that the di-
viding line between the two mappings, contracting the red region
and expanding the blue, can be located at x = 1/3 (at the right,
above) or x = 2/3 (at the left). The analytic forms of the red and
blue mappings are colored accordingly. The red mappings halve the
area while the blue mappings expand it, in both cases by a factor
of two. The primed coordinates describe coordinates in the central

unit square

rather than a smooth continuous flow. Let us consider the re-
versibility of maps. Textbook maps were typically both dis-
sipative and irreversible in 1987 [1]. At that time Bill had no
idea that maps could be time-reversible. He wrote [1]:

“The mathematical structures of dissipative
maps and the hydrodynamic equations are
inherently irreversible. The Nosé-Newton

equations are different: They are
time-reversible.”

III. Generating Time-Reversible Baker Maps

Fig. 3. 100,000 iterations of the inverse N2−1 of the nonequilib-
rium Baker Map N2(q, p) generate the fractal repellor (red, at the
left). Changing the sign of the vertical “momentum” p generates
the fractal attractor (blue, at the right) from the repellor. Point-
wise analyses of either fractal with trillions of iterations suggest an
information dimension DI = 1.7415. The mappings shown here
were achieved “pointwise”, by repeated mappings of a single point.
The limiting extrapolated steady-state information dimensions of
the two fractals, based on large-n meshes of width (1/3)n, are close
to 1.741, as is discussed in the text. The Kaplan-Yorke Lyapunov
dimension is significantly smaller, 1.7337 for the two rotated Baker
maps. Figs. 4 and 9 illustrate a similar puzzle, where all eight his-
tograms in those two figures have exactly the same information di-

mensions, 1.78969

If a time-reversible map M(q, p) maps a coordinate q and
momentum p forward for one step then it must obey the iden-
tity I = M · T · M · T , where T changes the sign of the
momentum p and I is the identity,

I(q, p) = (q, p) ; M(q, p) = (q′, p′) ; T (q,±p) = (q,∓p) .

We choose the left-to-right convention, 123. . . , for the order-
ing of sequences of mappings. For instance, with M time-
reversible, the sequence of four mappings M ·T ·M ·T cor-
responds first to stepping forward with M , second to shifting
into reverse, third to stepping backward with M , and fourth,
to changing the direction of motion from reverse to forward,
matching the original direction of motion, M ·T ·M ·T = I .

Reversibility can be implemented by considering the ro-
tational modification N2 of the Baker’s Map B, shown at
the right in Fig. 1. This modification clears the way for
area changes corresponding to the production of Boltzmann-
Gibbs’ entropy. The two-panel Baker map N2 (at the left)
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doubles the size of an area element dxdy in the blue region
at upper left and halves that of an element from the larger
red region. The two mappings (one for red points and one
for blue) are linear, with the “new” coordinate or momentum
of the form A + Bq + Cp. The constants (A,B,C) can be
identified relatively easily from the mappings of the vertices
of like-colored regions. See the example equations in Fig. 2,
which illustrates a useful mirror symmetry of the Cartesian
(x, y) Baker Map.

The resulting mappings for the two-panel Baker maps
can be expressed as follows: in conventional Cartesian co-
ordinates, with 0 < x, y < 1 the rightmost Baker map B in
Fig. 2 describes the mapping of the blue elements as follows:

x < (1/3) −→ x′ = 3x ; y′ = (1+2y)/3 [Blue Mapping] .

The red elements in the rightmost B mapping likewise fol-
low linear equations:

x > (1/3) −→ x′ = (3x−1)/2 ; y′ = y/3 [Red Mapping] .

To check the reversibility of these maps simply apply the
combination B · T · B · T to the vertices and check to see
whether or not the original points are recovered. Because the
combination mapping B · T · B produces four parallel hor-
izontal strips rather than two vertical strips at the lower left
of Fig. 1 the Cartesian Baker Map B (at top left) is not time-
reversible.

By analogy with flows a map M is said to be time-
reversible when it can be reversed by a three-step pro-
cess: (1) changing the signs of the momentum-like variables,
(2) propagating all the variables one (“backward”) iteration,
and then changing the signs of the momenta once more, so
that the inverse of the map M is given by M−1 = T ·M ·T .
In ordinary Hamiltonian mechanics the T mapping simply
maps (±q,±p) → (±q,∓p). Bill’s conversations with Bill
Vance and Joel Keizer during Vance’s graduate work at the
University of California’s Davis campus led us to a nonequi-
librium rotated version of the Baker Map B which we call
N2, N for “Nonequilibrium”, with “2” for two panels. This
Map’s domain is the diamond-shaped region, centered on
(q, p) = (0, 0) and shown at the right of Fig. 1 and again in
Fig. 3. Now imagine that the map N2 is applied to a repre-
sentative input point (q, p). This operation produces the next
point (q′, p′).

Our rotated nonequilibrium Map, N2(q, p) → (q′, p′)
has the following analytic form: For (blue in Fig. 1) twofold
expansion, q < p−

√
2/9:

q′ = (11q/6)− (7p/6) +
√
49/18 ;

p′ = (11p/6)− (7q/6)−
√
25/18 .

For (red in Fig. 1) twofold contraction, q > p−
√
2/9:

q′ = (11q/12)− (7p/12) +
√

49/72 ;

p′ = (11p/12)− (7q/12)−
√
1/72 .

Fig. 3 shows the resulting concentration of probability into
bands parallel to the attractor’s bottom left and the repellor’s
upper left edges of their diamond-shaped domains.

Although the algebra is more cumbersome we have cho-
sen to use the rotated N2(q, p) version of this map, centered
on the origin and confined to a diamond-shaped region of
sidelength 2, as shown at the right in Figs. 1 and 3. We re-
gard the horizontal q variable as a coordinate and the vertical
p variable as a momentum. Figs. 1 and 3 illustrate the time-
reversibility of the (q, p) map. This similarity to nonequilib-
rium molecular dynamics, along with the square roots gen-
erating the 45o rotation, are twin advantages of this nonequi-
librium diamond-shaped map N2. The square roots elimi-
nate most of the artificial periodic orbits resulting from fi-
nite computer precision. Beginning at the center point of the
Cartesian rational-number square map, (x, y) = (0.5, 0.5),
leads to a periodic orbit of just 3095 single-precision itera-
tions. Starting instead at the equivalent central point of the
irrational-numbered diamond map, (q, p) = (0.0, 0.0), leads
to a single-precision periodic orbit of 1 124 068 iterations.
With double-precision arithmetic the orbits are much longer.
1012 such (x, y) iterations from the same initial condition
gave no repeated points. Let us next consider an approximate
theoretical approach to analyzing the Baker fractal followed
by two computational algorithms. We will find several in-
teresting surprises in so doing. For a striking example see
Figs. 4 and 9 which display eight different histograms for
two distinct mappings, N2 and N3, with all eight giving ex-
actly the same areawise information dimension, 0.78969.

IV. Kaplan and Yorke’s Conjectured Dimension

It has been argued [11] that the fractal information di-
mension is best suited to characterizing fractal distributions
of points because it is uniquely insensitive to changes of vari-
ables. For that reason Kaplan and Yorke’s conjectured rela-
tion [12, 13] between the Lyapunov spectrum {λi} and the
information dimension, DKY = 1 − (λ1/λ2)

?
= DI in this

case, is of special interest. How does this relationship arise?
We quote from page 169 of Tamás Tél’s and Márton Gruiz’
excellent book [12], Chaotic Dynamics:

“Both the information dimension and the
average Lyapunov exponents are determined by

the natural distribution. We can therefore
expect to find an explicit relation between
them. This rule, called the Kaplan-Yorke
relation, is valid for chaotic attractors of

general two-dimensional invertible maps, and
can be obtained from a simple argument.”

This is followed by two pages of informal text ending up
with the “valid” rule above. Because the “rule” is violated by
the simple N2 map, with

DI = 0.7415 [from simulations] ;

DKY = 0.7337 [from Lyapunov Exponents] ,

the reasoning supporting the conjecture is obscure. Because
the Baker Map is linear one might expect that it would likely
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follow the conjectured relation. Kaplan and Yorke suggested
that a linear interpolation formula between the number of
terms in the last positive sum of exponents, starting with the
largest, λ1, and the number of terms in the next sum (the
first negative sum, with one term in addition to those in the
previous sum), would be a useful estimate for the informa-
tion dimension [13]. In fact they cite many a case, including
theoretical work carried out by L.S. Young, for which their
conjectured estimate is exactly correct.

The red portion of the compressible Baker Map of B in
Fig. 1 represents the (2/3) of the measure that stretches hor-
izontally by a factor (3/2) while the blue portion represents
that (1/3) of the measure that stretches by a factor of 3 in the
same direction, horizontally. As a result the longtime stretch-
ing rate per iteration is

λ1 =
2

3
ln

(
3

2

)
+

1

3
ln(3) =

1

3
ln

(
27

4

)
= 0.63651 .

Likewise (2/3) of the measure shrinks vertically by a factor
3 as does (1/3) by a factor (2/3) so that

λ2 =
2

3
ln

(
1

3

)
+

1

3
ln

(
2

3

)
=

1

3
ln

(
2

27

)
= −0.86756 .

The linear interpolation between the single-term “positive
sum”, 0.63651, and the two-term sum, 0.63651−0.86756 =
= −0.23105, gives an interpolated “number of terms for
a sum of zero”, 1 + (0.63651/0.86756) = 1.73368. This
dimension, sometimes called the “Lyapunov dimension” is
the Kaplan-Yorke dimension DKY.

In their 1998 paper [4], presented at the 1997 Budapest
Meeting on Chaos and Irreversibility [14], Bill and Harald
Posch introduced the two-panel nonequilibrium N2 Baker
map. The model stimulated more work at the meeting [15]
and subsequently [16]. In 2005 Kumiĉák wrote a very read-
able paper [16] emphasizing the connection of “General-
ized Baker maps” to the phase-space contractability (to frac-
tals) providing improved understanding of the emergence
of the Second Law of Thermodynamics for such models.
Kumiĉák characterized his generalized maps with the vari-
able w. The fraction of a unit-square mapping occupied
by the narrowest strip, is 1/w, 1/3 for the N2 mapping of
Fig. 1 and 2. Like Hoover and Posch, he assumed that Kaplan
and Yorke’s conjecture for the information dimension was
true. For the nonequilibrium w values of 3, 4, and 5 he quotes
information dimensions 1.734, 1.506, and 1.376, as well as
a formula for all the generalized Baker Maps. A decade later,
with Florian Grond [17], we checked this Kaplan-Yorke as-
sumption for a four-dimensional flow, as opposed to a map.
We chose the four-dimensional chaotic oscillator flow,

{ q̈ = −q − ζq̇ − ξq̇3 ; ζ̇ = q̇2 − T ; ξ̇ = q̇4 − 3q̇2T } −→
−→ DKY = 2.80 > DI = 2.56 .

and soon discovered that the conjecture fails in that case.
For that four-dimensional chaotic problem, with a relatively
strong temperature gradient, T = 1 + tanh(q), the interpo-
lated Lyapunov sum, between those for two and for three ex-
ponents, λ1+λ2+0.80λ3, vanishes. The consequent Kaplan-
Yorke dimension, 2.80, differs by about ten percent from the

bin-based dimensionality of 2.56. These results, along with
those that follow here leave the status of the conjecture per-
plexing. It would be useful to have a clear informal descrip-
tion of maps for which the conjecture is known to be true ac-
companied by an illustrative list of situations where it fails.

V. Areawise and Pointwise Information Dimensions

Fig. 4. Histograms of the (base-4 logarithm of) probability density
ρ(y) for 1, 2, 3, and 4 areawise iterations of the y component of the
Baker Map B. Notice that the number of bins at each level of proba-
bility is the product of a binomial coefficient and a power of two, in
the red case 1×1, 4×2, 6×4, 4×8, 1×16, for a total of 34 = 81
bins of width 1/81. Notice here that the leftmost third of the unit
interval, with summed-up probability 2/3, is reproduced as a scale
model (with the same information dimensionality) in the rightmost
two thirds of the interval, with probability 1/3. The information di-
mensions of all these iterates, DI =

∑
(P lnP)/ ln(δ) = 0.78969

are identical. This scale-model result differs from both the Kaplan-
Yorke value of 0.7337 and the extrapolated pointwise value 0.7415,
based on mesh sizes of (1/3)n and illustrated in Fig. 5. The his-
tograms were constructed by binning (in 3, 9, 27, and 81 bins) the
results of 1, 2, 3, and 4 iterations of 100,000 equally spaced initial
values on the interval 0 < y < 1. Each iteration reproduces the pre-
vious cumulative densities, but with threefold finer structure. These
previous densities likewise agree with those generated from another

map, N3, illustrated in Figs. 8 and 9

Numerical analyses of the fractal structures generated by
the compressible Cartesian version of the N2 Baker Map
reveals that there is no fractal structure in the x direction.
Only the y coordinate reveals fractal structure. See again the
rotated maps’ fractals in Fig. 3. This suggests two computa-
tional approaches to determining the information dimension
associated with the y direction in map B or the q = p direc-
tion in map N2:
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1. Propagating area mappings, starting with a homoge-
neous square-lattice covering of the initial unit square
or the rotated 2×2 diamond-shaped domain of Fig. 1;

2. Accumulating bin occupancies of points, with as many
as trillions of iterations generating a long sequence of
points starting from an arbitrary initial point.

Approaches (1) and (2), areawise and pointwise, respec-
tively appear to be equally legitimate routes to information
dimension. It was a surprise to us to find that the two don’t
agree although both these approaches do reach well-defined
limits. Another approach, (3), which we term “stochastic”,
adopts random numbers for successive values of x (the
Lyapunov-unstable nonfractal expanding direction) rather
than using the more time-consuming analytic N2 mapping.
With random numbers {0 < r < 1} the third approach is
simply a confined random walk (0 < y < 1) with red-
region “up” steps, to (1 + 2y)/3 one-third of the time and
“down” steps to (y/3) two-thirds of the time. The program-
ming of a single stochastic step requires one or two calls to
a random-number generator (for which we use a standard
random-number FORTRAN subroutine). A sample program
is included in Fig. 12. Note the underscore, not a hyphen, in
this four-line snippet:

call random_number(r)
if(r.lt.1/3) ynew = (1+2y)/3
if(r.gt.1/3) ynew = (0+ y)/3
call random_number(x)

We have already seen, in Fig. 4, that the areawise map-
ping used to generate the histograms, simply repeats the
single-iteration three-bin information dimension, 0.78969.
The pointwise mapping is simpler. It is only limited by
available computer time. A personal computer is quite ca-
pable of trillions of pointwise iterations. A billion point-
wise iterations take about a minute of computer time. Using
double-precision and an initial point (x, y) = (0.5, 0.5)←→
←→ (q, p) = (0, 0), the two algorithms, pointwise and
stochastic agree, as expected, to four-figure accuracy, with
the following division of the unit interval into three strips:

(0 < y < 1/3), (1/3 < y < 2/3), (2/3 < y < 1) .

For a total of one billion points the three-strip bin prob-
abilities (summing to unity) and the corresponding informa-
tion dimensions for the two algorithms are in overall agree-
ment:

pointwise : 0.666 681 049 + 0.295 151 739+

+0.038 167 212→ D = 0.6873;

stochastic : 0.666 631 518 + 0.295 178 423+

+0.038 190 059→ D = 0.6874.

The close agreement suggests that areawise mapping is an
outlier and recommends the adoption of pointwise distribu-
tions. We consider some interesting details of that approach
next.

Fig. 5. Stationary estimates of DI for the confined-random-walk
model of the Baker Map with results for 35,10,15 equal bins em-
phasized. We saw above that the two values shown at the zero
bin-size limit (δ → 0) correspond to the Kaplan-Yorke dimension,
0.7337, and a plausible extrapolation of trillion-iteration computa-
tions with as many as 319 bins, 0.7415. Note the qualitative differ-
ence of the mesh dependence (the slope is uniformly negative here
for δ = 3−n) compared to those shown in the next two Figs. 6 and 7
for 4−n, 5−n, 6−n, and 7−n. Two data here are from relatively
long runs. The two open circles at n = 18 and 19 correspond to
1.024× 1012 iterations. The smaller dots correspond to sequences

of 256 billion points

It is easy to verify that the one-dimensional and two-
dimensional pointwise information dimensions agree with
one another for readily convergent simulations with mod-
erate bin sizes, δ = 3−10 or 3−15. These results also agree
very well with stochastic-map values corresponding to the
rightmost mapping of Fig. 2 where x represents a random
number from the interval (0 < x < 1).

x < (1/3)→ y′ = (1 + 2y)/3 ; x > (1/3)→ y′ = (y/3) .

For a fixed choice of δy = (1/3)n the three approaches, as
shown above for a billion points, agree to five-figure accu-
racy, supporting the use of the simpler stochastic approach
shown in Fig. 5. The data cover the range from n = 5 to
n = 19, approaching DI from below, eventually reaching
a straight line with a well-defined limit 0.7415. It is straight-
forward to write a supporting random-walk computer pro-
gram distributing many successive points over 3n bins of
width (1/3)n. Figs. 5–7 show the results of distributing up
to a trillion iterations over as many as 711 ≃ 2× 109 square
bins.

A one-dimensional area mapping of the Baker map using
a uniform distribution of “many” points (millions or billions)
on the interval (0 < y < 1) puts 2/3 of them into the left-
hand interval of width δ = 1/3. The remaining 1/3 of this
singly-mapped measure is mapped uniformly into the two
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remaining bins, center and right, of combined length 2/3.
Fig. 4 illustrates the iterated operation of the compressible
Baker Map for 1, 2, 3, and 4 iterations applied to an initially
uniform distribution of 100000 points. For simplicity here
we have projected the result of the mapping onto the unit
interval in y rather than the 2 × 2 diamond or unit square.
Propagating the singly-mapped measure results in measures
of (2/3) and (1/6) and (1/6) in the three equal-width bins, and
so to an approximate single iteration information dimension
after a single iteration of many uniformly-dense points gives

DI(1) = ⟨P⟩/ ln(δ) =

=

[
2
3 ln

(
2
3

)
+ 1

6 ln
(
1
6

)
+ 1

6 ln
(
1
6

)]
ln
(
1
3

) = 0.78969 .

Here δ = 1/3 is the bin size and the { P } are the probabili-
ties, (2/3) and (1/6), of the three bins. The nine-bin area-wise
information dimension follows similarly with the leftmost
bin probability of (4/9) followed by four bins with proba-
bilities (1/9) and four more with probabilities (1/36). Sum-
ming the 9 or 27 or 81 P × ln(P) terms and dividing by
ln(1/9) . . . ln(81) gives exactly the same dimensionality as
before, DI(2) = 0.78969. Likewise from the histogram data
of Fig. 4 we find DI(3) = DI(4) = 0.78969.

In summary, we have three distinct estimates for the in-
formation dimension of the confined random-walk, 0.7337,
0.7415, and 0.7897, corresponding to three distinct estimates
for the two-dimensional maps B and N2, 1.7337, 1.7415,
and 1.7897.

Although initially it is a surprise to find that the same
information dimension results for 2 or 3 or 4 or . . . areawise
iterations, that result is fully consistent with, and implied by,
the scale-model nature of the distribution, as shown in Fig. 4.
Iterating a uniform coverage of the unit square or diamond

suggests that the information dimension of the Baker maps’
history is 1.78969. One would think that the limiting case
δ → 0 would also result from a long time series generated
by pointwise iteration of a single point. However, we saw
in Fig. 5 that pointwise iteration suggests a different dimen-
sionality, 1.7415!

VI. N3, A Well-Behaved Three-Panel Baker Map

Inspection of the N3 mapping illustrated by Fig. 8 shows
that both the blue and green panels increase in width by a fac-
tor 6 and decrease in length by a factor 3, while the red panel,
with probability 2/3, increases by a factor 3/2 and decreases
by a factor 3, giving rise to the Kaplan-Yorke dimension

λ1 = +0.867563 ; λ2 = −1.09861231 →
→ λ1 + 0.78969λ2 = 0→ DKY = +1.789690 ,

the same as the information dimensions found with areawise
and pointwise analyses. The probabilities associated with
N3, shown in the histograms of Fig. 9, are identical to those
of N2, but with a different ordering of the histogram rect-
angles. Evidently the N3 areawise dimensionality, like the
N2, doesn’t change. But unlike N2 the N3 map does agree
with Kaplan-Yorke. In a memoir for Francis Ree [18], Bill
chose meshes from (1/3)5 to (1/3)18 for a set of 1011 iter-
ations of the N3 map. Fig. 10 in the Ree memoir appears to
be fully consistent with a pointwise estimation DI = 0.790.
Within the estimated uncertainty of 0.001 it appears that the
N3 areawise, pointwise, and Kaplan-Yorke values of the in-
formation dimension all agree with one another! This makes
the failure of the simpler N2 Baker map, with only two lin-
ear panels, to provide the same simplicity suggested by Tél
and Gruiz [12] a puzzling challenge.

Fig. 6. Stationary estimates for the Baker Map Information Dimension using up to 415 and 513 bins of equal width. These data, based on
forty billion iterations of the random walk mapping suggest agreement with the Kaplan-Yorke dimensions of the one-dimensional y ver-

sion of two-panel Baker Maps, DKY = 0.7337
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Fig. 7. Stationary estimates for the one-dimensional version of the two-panel Baker Maps’ Information Dimensions using up to 611 and
711 bins of equal width. These data, like those in Fig. 4, are based on forty billion iterations of the confined random-walk mapping. Both
the lower Kaplan-Yorke dimension 0.7337 and the higher estimate 0.741 from page 11 of Ref. 18, based on meshes with up to 319 equal

bins, are shown as open circles at the left border of the δ = 6−n plot

Fig. 8. The three-panel Baker map N3 is slightly more complex
than the two-panel N2 map, dividing the upper left blue and green
portion in half. Applying the sequence of three maps N3 · T ·N3
shown at the bottom left, is quite different to a mirror image of the
original upper left. Evidently the N3 map is not time-reversible.
But both the areawise and the pointwise maps match the Kaplan-
Yorke information dimension. Quite unlike the simpler two-panel
Baker Map N2 the three routes to the N3 information dimension

apparently all reach the same value DI = 0.78969

Like N2 the three-panel N3 fractal corresponding to
Fig. 8 can be reproduced with calls to a random-number gen-
erator. Notice that the generator call includes an underscore,
not a hyphen. The simplest program results if the N3 fractal
is generated with the Cartesian y coordinate rather than the
rotated q:

call random_number(r)
ynew = (1+y)/3 ! green

if(r.lt.1/6) ynew = (2+y)/3 ! blue
if(r.gt.1/3) ynew = (0+y)/3 ! red
call random_number(xnew)
x = xnew
y = ynew

VII. Pointwise Analysis of Generalized Baker Maps

There is a surprising difference between N2, with its
three information dimensions, and N3, with its consistent
dimensions, all of them 0.78969 for the stochastic walk and
1.78969 for the (q, p) version of N3 illustrated in Fig. 8. It is
therefore interesting to see how general these disparities are.
It is straightforward to consider Kumiĉák’s series of Gen-
eralized Baker Maps, where the width of the smaller Baker
strip is 1/w, 1/2 for the incompressible map, 1/3 for our N2
map, and so on. Fig. 10 is the first step in this exploration.
It shows pointwise information dimensions for a dozen or so
bin sizes for each of the generalized maps within the range
2 < w < 9.

Each of the filled circles in Fig. 10 shows the finite-bin-
size information dimension for two billion points generated
with the stochastic analog of the N2 map of Fig. 1:
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call random_number(r)
if(r.lt.1/w) ynew = [1+(w-1)y]/w ! expanding
if(r.gt.1/w) ynew = y/w ! compressing
call random_number(x) ! for the (x,y) version
y = ynew

The cut line at x = (1/w) separates the expanding and
contracting regions of the unit square or unit interval of y.
There is a gradual decrease of DKY(w) as the mesh is refined
and it appears that the Kaplan-Yorke dimensions of Fig. 10
are quite close to a straight-line extrapolation of the point-
wise data. To check this possibility we invested a bit over
a trillion points in a series of four open-circle pointwise mea-
surements with the finest mesh resolution δ = 2−30, a bit
less than a billionth. The resulting plot, Fig. 11, does give
an excellent straight line. This allows an accurate estimate
for the pointwise dimension, DI = 0.512. This relatively
precise result is significantly different to the Kaplan-Yorke
DKY = 0.506. We conclude that the failure of the Kaplan-
Yorke approximation is not limited to w = 3 and 4 but likely
extends to other maps. It appears that the extrapolation to
vanishing δy gains both accuracy and precision as the com-
pression and expansion ratios increase from 2 to 3 and be-
yond.

VIII. Conclusions and Discussion

Relatively simple numerical work, on the order of a few
dozen lines of FORTRAN, along with a few hours of laptop
time, are enough to characterize our variety of results for DI.
A sample program, along with its results for the cumulative
probabilities for N2 and N3 appears in Fig. 12. Similar pro-
grams take only an hour or so to write. They can seek infor-
mation dimensions based on (1) iterating areas or (2) gener-
ating representative sequences of points. These two different
views of fractal structure are analogs of the Liouville and tra-
jectory descriptions of particle mechanics. We think the sin-
gular anisotropy is responsible for the ambiguity of the frac-
tals’ dimensionalities, and favors the pointwise approach.
This corresponds to considering the long-time behavior of
a particular system rather than a many-particle ensemble
of systems. We found that pointwise analysis with the mesh
series (1/3)n appears to contradict the Kaplan-Yorke dimen-
sion while the alternative series (1/4)n, (1/5)n, (1/7)n ap-
pear to support it. The series (1/6)n is inconclusive.

Though the one-dimensional confined random walk pro-
vides a fractal distribution in {y}, indistinguishable from
that for the compressible N2 Baker Map, the confined-walk
analog lacks the Baker-Map Lyapunov exponents on which
the Kaplan-Yorke dimension relies:

λ1 =
1

3
ln

(
27

4

)
; λ2 =

1

3
ln

(
2

27

)
→ DKY = 0.73368 .

The variety of results obtained here for specific maps, and
meshes, time-reversible and not, emphasizes the value of
studying particular, as opposed to general, models. There
are publications suggesting that the information dimension
is particularly robust to changes of variables [11], certainly
a desirable property. That work, like Doyne Farmer’s [19],
assumes that the information dimension can be determined
unambiguously, while in fact there appear to be many in-
formation dimensions, not only pointwise and areawise, but
also depending upon the details of the binning and extrapo-
lation to vanishing bin size. It is fortuitous that in some cases
(for instance w = 3) apparent information dimensions sug-
gest powerlaw extrapolation in powers of 1/ ln(δ). Mathe-
matical results often state that results hold for maps without
singular points. Yet the simplest Baker Maps invariably have
“cut lines” across which the mapping is discontinuous, caus-
ing the nonmathematical specialist alarm.

Returning to the longstanding motivations of Losch-
midt’s Reversibility Paradox and Zermélo’s Recurrence
Paradox, compressible maps simplify our understanding of
their resolutions, for flows just as well as for maps. Frac-
tal states have zero volume in their embedding spaces. This
means that nonequilibrium distributions are typically at-
tractor/repellor pairs. Chaos provides exponentially unsta-
ble (and therefore unobservable) repellors and exponentially
stable (and therefore inevitable) attractors. Time-reversible
maps provide simple fractal examples of Second Law irre-
versibility despite the paradoxes. Also notable is the quan-
titative agreement, within Central Limit Theorem fluctua-
tions, of reversible distributions with those generated using
stochastic random walks.

Let us summarize the facts that stand out from our work:
The simple N2 two-panel map, whether one-dimensional, in
y, or two-dimensional, in (q, p), provides three different lim-
iting values of information dimension “areawise”, 0.78969
or 1.78969, “pointwise”, 0.7415 or 1.7415, and Kaplan-
Yorke, 0.73368 or 1.73368. The more complex, but still lin-
ear, three-panel N3 map is not time-reversible but some-
how is consistent with DI = 0.78969 in one dimension and
1.78969 in two dimensions for all three approaches. It ap-
pears that there is much work to be accomplished in order
to understand the ambiguous nature of what is presumably
the simplest and most fundamental of the chaos quantifiers,
the information dimension. We encourage the reader to think
about such problems and to develop algorithms providing
insight into maps as well as flows. In years past we have of-
fered $1000 Snook Prize awards for interesting CMST pa-
pers making progress in various aspects of computational
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statistical mechanics. Please address the authors in the event
that you would like to contribute research in the area sug-
gested by this paper during the calendar year 2023.

Fig. 9. Histograms of the (base-4 logarithm of) probability den-
sity ρ(y) for 1, 2, 3, and 4 areawise iterations of the y component
of the nonequilibrium N3 Map. Notice that the central and right-
most thirds of each resulting mapping are both perfect scale mod-
els (reduced by a factor of four) of the leftmost third. This observa-
tion explains the persistence of the three-bin information dimension
throughout any number of 3n iterations with 3n bins. Notice also
that the cumulative distributions (integrals over y) at each iteration
stage reproduce the values from the previous iterations, agreeing
with those from the histograms in Fig. 4. In both figures the area-

wise dimension is DI = 0.78969

IX. An Example FORTRAN Program

We provide a working FORTRAN program which gener-
ates a series of y coordinates corresponding to random val-
ues of x. The resulting points correspond to the Cartesian
form of the Baker Map. The points generate a histogram
with one million bins and a total of one million y coordi-
nates. The numbers of bins and coordinates, (NB,NY) are
parameters which can be chosen arbitrarily.

Once the histogram has been computed the cumulative
sum CUM is calculated and displayed in Fig. 12. Because the
histogram is wildly discontinuous the slope of the sum is sin-
gular. It is curious that the cumulative sums for the N2 and
N3 maps coincide for bins 3, 9, 27, . . . , 3n, a consequence
of both mappings being based on exactly the same sequence
of random numbers. The shapes and locations of the two cu-
mulative sums are relatively insensitive to the choices of bin
and coordinate numbers.

Fig. 10. Dependence of the pointwise information dimension DI on
the bin size δ for six generalized Baker Maps. The reciprocals of the
integers {w} from 3 to 8 indicate the fractions of the unit square
occupied by the narrower rectangles of the mappings, 1/w. As an
example the N2 mapping of Fig. 1 corresponds to the integer 3 with
the rectangular areas different by a factor of 2. The points for each
mapping give information dimensions for different choices of the
bin size, right-to-left from (1/8)3 to (1/8)10 for the bottom set of
eight purple data points and from (1/3)5 to (1/3)19 for the top set
of 15 green points. The Kaplan-Yorke approximations are shown
as orange filled circles for each of these generalized maps. They
are excellent approximations! Each filled circle is the result of two
billion steps in a random-walk simulation of the corresponding gen-

eralized Baker Map

Fig. 11. The information dimension from the definition
⟨ln(P)⟩/ ln(δ) is evaluated here for the generalized Baker
Map incorporating threefold area changes corresponding to w = 4
using from 48 to 415 bins with the green points indicating results
with two billion iterations and the red open circles indicating 400
billion iterations. Just as in our earlier work with twofold area
changes the data clearly approach a linear dependence on the
inverse logarithm of the number of bins and show, at DI = 0.512,
a clear deviation from the Kaplan-Yorke prediction DKY = 0.506
indicated on the ordinate axis. The deviation, 0.006 here, is a bit
smaller than the 0.008 deviation found in Fig. 5 using a like
amount of simulation data for the Generalized Baker Mapping

with twofold area changes, corresponding to w = 3
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Fig. 12. FORTRAN programming with NB bins and NY y steps in the confined random walk equivalent of the N2 mapping. This
FORTRAN program uses a standard random-number generator to simulate the binned density and its y integral. A similar program for N3

replaces the three lines computing Y(J) and YNEW by the following:
Y(J) = (1+YNEW)/3

IF(XNEW.LT.1/6.0d0) Y(J) = (2+YNEW)/3
IF(XNEW.GT.1/3.0d0) Y(J) = (0+YNEW)/3

The curves include one million successive y values distributed into one million bins of width 0.000001. As the numerical calculation in
the accompanying FORTRAN requires less than a minute, the rigorous analysis of Ref. 20 (which generates the Kaplan-Yorke dimension)
is unnecessary to the visualization of the probabilities. It is interesting that the two curves coincide for numbers of bins which are integral
powers of three: 3, 9, 27, . . . , 3n. We don’t know whether or not the information dimensions of simple nonequilibrium flows have ambi-

guities similar to those found here, for maps
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[16] J. Kumiĉák, Irreversibility in a Simple Reversible Model,
Physical Review E 71, 016115 (2005).

[17] W.G. Hoover, C.G. Hoover, F. Grond, Phase-Space Growth
Rates, Local Lyapunov Spectra, and Symmetry Breaking for
Time-Reversible Dissipative Oscillators, Communications in
Nonlinear Science and Numerical Simulation 13, 1180–1193
(2006).

[18] W.G. Hoover, Compressible Baker Maps and Their Inverses.
A Memoir for Francis Hayin Ree [1936–2020], Computa-
tional Methods in Science and Technology 26, 5–13 (2020).

[19] J.D. Farmer, Information Dimension and the Probabilis-
tic Structure of Chaos, Zeitschrift für Naturforschung 3A,
1304–1325 (1982).

[20] S. Tasaki, T. Gilbert, J.R. Dorfman, An Analytical Construc-
tion of the SRB Measures for Baker-Type Maps, Chaos 8,
424–443 (1998). Note Fig. 4.

Bill and Carol Hoover moved from California to Nevada in 2005, attracted by the lack of crowding, pollu-
tion, and state income tax. Through the internet they have been able to continue research collaborations with
colleagues world wide. Bill did his graduate degrees work at the University of Michigan (1960–1962) with
MSChem and PhD degrees in Chemical Physics. Carol did her graduate PhD (1975–1978) work in Plasma
Physics while a Student Employee at the Lawrence Livermore Laboratory and the University of California at
Davis, where Bill was a member of her Doctoral Committee. They married in 1988, prior to their sabbatical
year in Yokohama, working with Professors Boku, Nosé, Kawai, all at Keio University/Yokohama, and Sergio
Ihara (Hitachi, Kokobungi, Japan). They have authored eight books and about 300 publications through the
years with the most recent book, Elegant Simulations; From Simple Oscillators to Many-Body Systems coau-
thored by Clint Sprott (Madison, Wisconsin) published by World Scientific in early 2023. The Hoovers have
continued their research, emphasizing simple models linked to macroscopic systems in Ruby Valley Nevada,
where the main activity is raising thousands of Angus cattle in a close-knit mountain valley of about 200
residents. Bill’s first two books, Molecular Dynamics (Springer-Verlag, 1986) and Computational Statistical
Mechanics (Elsevier, 1991), are excellent introductions to their subjects.

CMST 29(1–4) 5–16 (2023) DOI:10.12921/cmst.2023.0000007


	Numerical Simulations of Many-Body Dynamics
	Time-Reversible Chaos and the Two-Dimensional Baker Map
	Generating Time-Reversible Baker Maps
	Kaplan and Yorke's Conjectured Dimension
	Areawise and Pointwise Information Dimensions
	N3, A Well-Behaved Three-Panel Baker Map
	Pointwise Analysis of Generalized Baker Maps
	Conclusions and Discussion
	An Example FORTRAN Program

