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Abstract: We analyze the time-reversible mechanics of two irreversible simulation types. The first is a dissipative one-
dimensional heat-conducting oscillator exposed to a temperature gradient in a three-dimensional phase space with coordi-
nate q, momentum p, and thermostat control variable ζ. The second type simulates a conservative two-dimensional N -body
fluid with 4N phase variables {q, p} undergoing shock compression. Despite the time-reversibility of each of the three
oscillator equations and all of the 4N manybody motion equations both types of simulation are irreversible, obeying the
Second Law of Thermodynamics. But for different reasons. The irreversible oscillator seeks out an attractive dissipative
limit cycle. The likewise irreversible, but thoroughly conservative, Newtonian shockwave eventually generates a reversible
near-equilibrium pair of rarefaction fans. Both problem types illustrate interesting features of Lyapunov instability. This
instability results in the exponential growth of small perturbations, ∝ eλt where λ is a “Lyapunov exponent”.
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I. Reversibility of Dissipative
and Conservative Mechanics

Classical mechanics is time-reversible in the sense that
a movie of the motion, run backwards, obeys exactly the
same motion equations as does the original forward version.
Classical mechanics is an excellent model for conservative
systems free of the real-life dissipative effects of friction,
viscosity, and heat conduction. In order to model dissipative
phenomena on an atomistic scale nonequilibrium molecu-
lar dynamics includes control variables in the equations of
motion. These variables use feedback to impose local val-
ues of the temperature and pressure which drive nonequilib-
rium flows. Thousands of implementations of this approach
have been stimulated by Shuichi Nosé’s pioneering 1984
work [1, 2]. We will explore the time reversibility of an ap-
plication of his work here.

Nosé’s 1984 papers generalize Hamiltonian mechanics
with a frictional variable ζ controlling the kinetic tempera-
ture T of one or more particular degrees of freedom:

ζ −→ kT = ⟨ p2/m = mv2 ⟩ .
Here k is Boltzmann’s constant, m the mass of a particle, and
mv = p the momentum of a controlled degree of freedom.
For simplicity in what follows we set both k and m equal
to unity. Hoover applied Nosé’s idea to the simplest spe-
cial case, a one-dimensional harmonic oscillator, in 1985 [3],
later extending that work in 1986 with Posch and Vesely [4].
Numerical solutions of the thermostatted oscillator’s equa-
tions of motion (with k and m unity now) ,

{ q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − T },
can be reversed in either of two ways, by [1] changing the
signs of the time and timestep, t and dt, or [2] by changing



134 Wm.G. Hoover, C.G. Hoover

the signs of p and the control variable ζ. Both ways sim-
ply reverse the time dependence of the coordinate: q(+t) →
→ q(−t).

II. One-Dimensional Heat-Conducting Oscillator

In 1997 Posch and Hoover generalized the oscilla-
tor problem, specifying a coordinate-dependent temperature
T (q) = 1 + ϵ tanh(q). This temperature profile has a maxi-
mum temperature gradient, (dT/dq) = ϵ at q = 0. Particular
choices of ϵ generated a variety of (q, p, ζ) “strange attrac-
tors” [fractal distributions in (q, p, ζ) space]. Fig. 5, a cross-
section through a fractal attractor, gives an impression of
the complicated structures resulting from relatively simple
ordinary differential equations. The fractional dimensionali-
ties of these attractor distributions were all between 2 and 3.
Other initial conditions or choices of T (q) resulted in one-
dimensional limit cycles rather than fractals [5]. More re-
cently, in 2014, Sprott and the Hoovers found initial condi-
tions, (q, 0, 0), with T (q) = 1 + 0.42 tanh(q), which gener-
ate two distinct families of conservative tori (with the initial
values q = −2.3 and 3.5) [6], The tori are interlinked and
coexisting stably with a one-dimensional dissipative limit
cycle. The cycle can be generated easily with initial val-
ues (q, p, ζ) = (−2,−2, 0) and a fourth-order Runge-Kutta
timestep dt = 0.01. Fig. 2 in Reference 6 shows the three
interlinked phase-space structures. We reproduce it here as
Fig. 1.

In this rich collection of one-dimensional limit cycles,
two-dimensional tori, and fractional-dimensional strange at-
tractors the simplest special case is arguably T (q) = 1 +
+ tanh(q). The coordinate-dependent temperature varies
from 0 to 2 as q varies from −∞ to +∞. We believe
that the basin of attraction for this case is the entire three-

Fig. 1. Two conservative tori are interlinked with a dissipative
limit cycle [6]. All three stationary solutions of the oscillator equa-
tions for T (q) = 1 + 0.42 tanh(q) can be generated with initial
values (q, p, ζ) = (-2,-2,0), (-2.3,0,0) and (+3.5, 0, 0). If instead
T (q) = 1 + tanh(q) all initial conditions lead to the limit cycle

illustrated in Figs. 2–4

dimensional phase space. To support this idea we chose
a square 200 × 200 grid of (q, p, ζ) points in the ζ = 0
plane with q and p ranging from −4.975 to +4.975 in steps
of 0.05. For each of these 40,000 initial conditions we gen-
erated an orbit of length 100τ , and plotted the (q, p) val-

Fig. 2. Stable and unstable limit cycles for a heat-conducting one-dimensional harmonic oscillator. At the left the time dependence
of coordinate q, momentum p, and friction coefficient ζ, purple, green, and blue respectively, for the conducting oscillator with
period τ = 13.7494. At the right are three-dimensional plots of the attractive orbit (green), with initial condition {q, p, ζ} =
= {0, 0.1050726, 0.1455481} and the corresponding unstable repulsive orbit (red), with p and ζ changed in sign. The mean value of
the (hot to cold) heat current is ⟨ (p3/2) ⟩ = −0.74383. The red and green circles indicate the four crossings of the orbits with the ζ = 0

grey plane
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ues whenever ζ changed sign. Every one of these long orbits
ended up crossing at the two penetration points plotted in
green in Fig. 2. For each orbit we used a timestep of τ/10000
where the cycle period is τ = 13.7494. Let us explore that
solution in more detail, based on fourth-order Runge-Kutta
numerical simulations.

Fig. 3. Time dependence of the local Lyapunov exponent for the
oscillator during its 99th and 100th period of oscillation. The local
value is purple. The green time average of λ1(t) vanishes, corre-

sponding to the lack of averaged strain along the trajectory

From the phase-space analog of Liouville’s continuity
equation the mean value of the friction coefficient ζ neces-
sarily corresponds to the time-averaged loss rate of phase
volume, ⊗ = dqdpdζ:

⟨ (⊗̇/⊗) ⟩ = ⟨ (∂q̇/∂q) + (∂ṗ/∂p) + (∂ζ̇/∂ζ) ⟩ =
= ⟨ 0− ζ + 0 ⟩ = −1.325 .

In a single period the comoving phase volume decreases by
a factor of e⟨ ζ ⟩τ = e1.325×13.7494 ≃ 108. The maximum
temperature gradient, (dT/dq), is unity, at q = 0. The mean
heat current, averaged over time, ⟨(p3/2)⟩, is −0.74383, and
the net transport of kinetic energy (p2/2) is from right to left,
consistent with thermodynamics’ Second Law.

The Lyapunov exponents, three of them in a three-
dimensional phase space, measure the comoving expansion
rates of the phase volume ⊗:

(⊗̇/⊗) = λ1(t) + λ2(t) + λ3(t) .

The one-dimensional limit cycle’s largest Lyapunov expo-
nent has an average value of zero, as shown in Fig. 3.
The vanishing mean value of λ1 corresponds to the aver-
aged lack of relative motion of two adjacent trajectory points
along the attractive one-dimensional trajectory. λ2 and λ3

have negative averages, −0.110 and −1.215, describing the
net rates of convergence of nearby trajectories in the two di-
rections perpendicular to the limit cycle.

For the special case T (q) = 1+tanh(q) the longtime so-
lution of the motion equations forward in time is the unique
attractive periodic orbit shown (green) in the right panel of
Fig. 2. The period τ is 13.7494 with −2.616 < q < +0.198.
The reversed orbit, with the same range of q visited in the
opposite time direction, is half the attractor/repellor pair.

The repellor is only observable briefly due to its inherent
Lyapunov instability, proportional to eλ1(t)×t ≃ e+1.215t.
We expect to see the exponential growth of an original one-
step roundoff error grow to observability in just a few oscil-
lator periods. We examine that next.

Fig. 4. Evolution of ten (q, ζ) orbits beginning at the initial upper
black circle with the conditions of Fig. 2. At time t = 137.494
the sign of the timestep is reversed. The reversed trajectory (black)
traces back accurately for nearly three reversed orbits before mak-
ing a rapid switch to the stabilized repellor, following it to the lower

black circle at t = 0

III. Stability and Instability
of Periodic Oscillator Orbits

Fig. 4 illustrates the stability of the attractive limit-cycle
orbit, {λi} = {0,−0.110,−1.215} and the instability of
its time reversal, {λi} = {+1.215,+0.110, 0} with a two-
stage simulation. First we follow ten circuits of the attractor
in green, using a million quadruple-precision fourth-order
Runge-Kutta timesteps of dt = 10−5τ = 0.000137494, im-
plying a local integration error of order dt5/120 ≃ e−49 at
each step. We then reverse time, +dt → −dt, converting
the stable attractor to the unstable reversed repellor. Unlike
the stable attractor the repellor is unstable, with a positive
Lyapunov exponent λ1 = 1.215. This suggests that the re-
versal should become visibly inaccurate at a time of order
49.3/1.215 ≃ three or four periods. This agrees well with
the reversed black trajectory of Fig. 4, which follows the re-
versed (q, p, ζ) orbit (stabilized by the negative dt) for be-
tween six and seven periods, ending up at the lower black
circle:

{ q = 0, p = −0.1050726, ζ = −0.1455481 } .

The largest Lyapunov exponent is relatively easy to mea-
sure. Follow two neighboring trajectories, the “reference”
and the “satellite”, adjusting the satellite location by rescal-
ing its separation from the reference, δt+dt → δo, at the con-
clusion of each time step. This rescaling precisely counters
the exponential growth which would occur in the absence
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of rescaling. The local Lyapunov exponent follows from the
rescaling operation:

λ1dt = − ln(δafter/δo) → λ1(t) = (−1/dt) ln(δt+dt/δo).

A convenient choice for δo is 0.00001. Fig. 3 shows the time
variation of the largest Lyapunov exponent λ1, which lies in
the range −3.00 < λ1(t) < +3.48 with a mean value of
zero, corresponding to the (lack of) growth rate of perturba-
tions parallel to the trajectory.

IV. Time Reversibility and Loschmidt’s Paradox

A classic physics puzzle addresses the surprising coex-
istence of macroscopic irreversibility with microscopic time
reversibility. In 1876 Loschmidt pointed out that any solu-
tion of the equations of motion which is time reversible and
demonstrates the production of entropy can be made to vi-
olate the Second Law of Thermodynamics by analyzing the
reversed motion. Simply stated, time-reversible mechanics
necessarily violates the Second Law in one of the two time
directions. We have already seen that time-reversible Nosé-
Hoover mechanics, with control of the kinetic temperature,
obeys the Second Law. This is not only possible, but in-
evitable, for computational models of the heat-conducting
oscillator. With dt positive, attractive distributions such as
the oscillator limit cycle are inevitably observed. Repellors
are not, due to their vanishing probabilities.

The exploration of a simple one-body time-reversible
model [7], and its relation to entropy production in a many-
body system with heat flow [8], clarified the reversibil-
ity paradox in 1987. The “Galton Staircase” pictures a re-
versibly thermostatted particle in a downhill steady state,
driven by a periodic sinusoidal potential superimposed on
a constant downhill field. As the particle falls more than
it climbs, the model generates a fractal (fractional dimen-
sional) phase-space distribution in its three-dimensional
phase space (q, p, ζ). The resulting zero-volume attractive
fractal, when reversed, corresponds to the extreme rarity of
states violating the Second Law of Thermodynamics by con-
verting heat to work. The mirror-image repulsive fractal, cor-
responding to an upward moving particle violating the Law
has, like the attractor, zero volume, but is repulsive and of
zero probability. The “attractor” is attractive, with proba-
bility one. This difference in behavior occurs because Lya-
punov instability is not time-reversible.

In the Galton staircase a particle travelling uphill, as
described by the repellor states, violates the Law by con-
verting kinetic energy to potential. Repulsion, coupled with
zero volume, makes these fractal repellor states unobserv-
able. The conducting oscillator of Figs. 2–4 offers a sim-
ple analog for a particle transporting energy from hot to
cold rather than transporting mass through motion driven
by a gravitational field. Both systems resolve Loschmidt’s
Paradox by introducing time-reversible variables controlling
temperature. It is the extreme unobservable rarity of repellor
states, the fractal set for uphill motion in the Galton Stair-
case, and here the repulsive one-dimensional repellor limit

cycle in three-dimensional space, that forces motions to obey
the Second Law. Staircase simulations reveal the exponential
growth of the separation from the fractal repellor and an ir-
resistible attraction to the repellor’s mirror-image attractor.
Likewise the conducting oscillator with T = 1 + tanh(q)
follows the attractive limit cycle of the figures, rather than
the cycle’s mirror image repulsive twin, which repels rather
than attracts.

Holian, Hoover, and Posch [8] stressed that similar ir-
reversible behavior occurs in the reversible simulations of
thermostatted nonequilibrium manybody systems. They de-
scribed a heat-conducting system in contact with two reser-
voirs, one hot and the other cold. Such a system loses phase
volume when it satisfies Fourier’s Law, transmitting heat
from the hot reservoir (with an entropy production Q/TH)
to the cold (with an entropy loss Q/TC) which necessarily
exceeds the gain. The result is a phase-volume loss expo-
nential in the time. Just as in the Galton Staircase mass-flow
problem heat flow from hot to cold results in fractal phase-
space structures. Both fractal types have zero volume, with
zero probability of observing the repellor and with inevitable
longtime probability one for the attractor.

V. An Illustrative Fractal for the Conducting Oscillator

To help visualize the attractors and repellors that charac-
terize nonequilibrium systems we consider here a fractal re-
sulting from dissipation controlled by a pair of control vari-
ables. ξ controls the fourth moment of the velocity distribu-
tion while ζ controls the second. Because fractal distribu-
tions are difficult to visualize in their entirety they are typ-
ically described by projections or cross sections. The four-
dimensional conducting oscillator introduced by Posch and
Hoover [5] provides a variety of thought-provoking fractal
structures. As an example, for the same temperature profile
considered here, T = 1 + tanh(q), see Fig. 5. The addi-
tional phase-space dimension results from using two control
variables rather than one. The doubly-thermostatted oscilla-
tor requires the solution of four ordinary differential equa-
tions:

{ q̇ = p ; ṗ = −q−ξp3−ζp ; ξ̇ = p4−3p2T ; ζ̇ = p2−T }.

These motion equations are fully ergodic for the special case
in which T = 1. That is, all possible values of the four vari-
ables occur and with the known distribution:

4π2prob(q, p, ξ, ζ) = e−(q2+p2+ξ2+ζ2)/2 .

VI. Two-Dimensional Strong Shockwaves
Do Not Reverse

We have seen that Nosé-Hoover temperature control pro-
vides a probabilistic mechanism for irreversibility, the for-
mation of attractor-repellor pairs in phase space which stabi-
lize the attractor and destabilize the repellor, both through
Lyapunov instability. We have recently detected a related
mechanism, but free of control variables, demonstrating the
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Fig. 5. This double cross section is generated by plotting (q, p) trajectory points whenever the two thermostat values are near zero. The fig-
ure includes ten million points satisfying the condition ξ2+ζ2 < 0.0001. Fourth-order Runge-Kutta integration with dt = 0.001 was used

irreversibility of purely Newtonian mechanical systems, il-
lustrated here with an atomistic model generating strong
shockwaves. Shockwaves are localized regions, usually just
a few atomic diameters in width, within which density, pres-
sure, energy, and temperature all undergo substantial in-
creases. We consider a model here where the temperature
changes by a factor of 100 and the density doubles. Shock-
waves are relatively easily treated computationally because
they are bounded by equilibrium thermodynamic states.
To ease the computational burden we consider the shock-
wave compression of two-dimensional soft-disk particles in
two space dimensions. The sudden compression occurs in
the x direction. The purely-repulsive pair potential is chosen
for simplicity, ϕ(r < 1) = (10/π)(1− r)3. The initial near-
zero-pressure state is a nearly perfect square lattice, with lat-
tice spacing of unity. The small initial displacements in the
range ±0.05 correspond to a temperature of order 0.001.

Consider the head-on collision of two N -body mirror-
image zero-pressure zero-energy blocks of material with op-
posite velocities [9–11], shown in Fig. 6. Here N = 35 ×
×24 = 840. With periodic boundaries in y the two collid-
ing N -body blocks steadily convert their kinetic energy to
heat. At any stage in the simulation a reversed solution will
show, briefly, antithermodynamic behavior, converting some
of the internal energy of the stagnating blocks back into the
original directed kinetic energy, (p2x/2) = (0.8752/2) per
particle.

Berni Alder and Marvin Ross emphasized the highly ir-
reversible nature of shockwaves [12] as follows: “the most
irreversible way to go from one thermodynamic state to an-
other”. A simple example of this transformation is illustrated

in Fig. 6, where 70 × 24 = 1680 particles undergo twofold
compression and then expand to form a symmetric pair of
rarefaction fans. The initial condition for this example is
a neighboring mirror-image pair of colliding square-lattice
blocks, both at the stress-free density of unity. The left half
travels rightward and the right half leftward. Periodic bound-
aries are imposed in the y direction, at the top and bottom of
the two colliding 840-body blocks. The dynamics is purely
Newtonian. The difference between the steady shockwaves
forward in time and the unsteady rarefaction (rather than
shocks) waves in the reversed time direction of Fig. 7 shows
that the shockwaves are irreversible. In fact the irreversible
Navier-Stokes equations of motion predict that a reversed
shockwave will immediately widen and slow, transforming
into an unsteady rarefaction fan [9, 10].

Fig. 7 was constructed by reversing the velocities of all
particles in Fig. 6 at the time 20, the time of maximum
twofold compression. Notice that the snapshot second from
the bottom of Fig. 7, where the flow has been reversed so
that the configuration is only halfway to maximum compres-
sion, resembles closely that second from the bottom in Fig. 6,
where the flow is forward, and halfway to the time of max-
imum compression. This apparent reversibility suggests that
the initial single-step Runge-Kutta integration error,

dt = 0.01 → 0.015/5! = e−27.8 or

dt = 0.005 → 200−5/5! = e−31.3 ,

expands exponentially to become of order unity at t =
= 27.8/λ or 31.3/λ in these two typical cases.
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Fig. 6. At the left we see five particle plots, at times 0, 10, 20, 30, and 40 from bottom to top, during the twofold shock compression
(0 < t < 20) and subsequent generation of rarefaction waves (t > 20) simulated by the headon collision of 2× 840 = 1680 soft disks.
The initial square-lattice coordinates (at bottom left) and horizontal velocities up = us/2 = ±0.875 (at bottom right) are selected so as
to generate twofold shock compression, doubling the density to generate a hot fluid, reaching it with the coordinates and velocities in the
middle view of Fig. 6 and the bottom view of Fig. 7. Initially the lattice symmetry is broken with random displacements of x and y in
the range from −0.05 to +0.05. The top two plots show the growing twin rarefaction fans launched from the edges of the hot dense fluid.
At the right the evolving horizontal velocity components are shown at the same five equally-spaced times, from 0 to 40. The rarefaction
fans at times 30 and 40 are expanding at about the speed of sound. The smooth short-ranged repulsive pair potential governing the Newto-

nian dynamics is ϕ(r < 1) = (10/π)(1− r)3. The fourth-order Runge-Kutta integrator with dt = 0.01 was used for Figs. 6 and 7

Attempting to confirm and elaborate this estimate we
constructed reference and satellite trajectories, for a range
of timesteps from n = 1 through n = 7:

dt = 0.1/2n ; n = 1 → dt = 0.05 . . . n = 7 →
→ dt = 0.00078125 ,

rescaling their reference-to-satellite separation to 0.00001
at the end of each timestep. Typical resulting values of the
local-in-time Lyapunov exponent λ1(t) ≃ 1.8 are shown in
Figs. 8 and 9. The complete set of 6720 two-block motion
equations is included in the Lyapunov calculation. The signs
of all the velocity components are changed at time 20 in
Fig. 8 and at time 10 in Fig. 9, with the particle coordinates
pictured as the latter figure’s inset.

Fluctuations of the local exponent λ1(t) can be substan-
tially reduced by smoothing, averaging the nearest 100 lo-
cal values. In Fig. 8 this average is plotted in red. With dt
positive the exponent λ1(t) is uniformly positive, changing
sign with the velocity reversal. The reversed reference and
satellite trajectories attract for a while, as expected, but only
for a while, for a time of order 3 with dt = 0.01 and 5
with dt = 0.00078125. Because integration errors are mag-
nified exponentially, as described by the Lyapunov expo-

nent, λ1 ≃ 1.8, there is a systematic timestep dependence
of the time “trev(dt)”. The exponent is reversed for a time
proportional to the logarithm of the number of timesteps,
∝ ln(1/dt). Roughly speaking, trev(dt) increases by about
0.4 for each halving of the timestep. See Fig. 9. A set of
seven computations with 0.05 ≤ dt ≤ 0.0078125 suggests
the phenomenological relation

e1.8trev(dt) ≃ dt−? → 1.8trev ≃ −? ln(dt) .

In Fig. 9 trev varies from about 3 to about 5 as the timestep
decreases by a factor of 64.

The logarithmic relationship between timestep and re-
versal time is consistent with the exponential amplifica-
tion of few-step integration errors. A similar rough relation-
ship holds for the limit-cycle problem of Figs. 2–4. Captur-
ing a reversed trajectory with visual accuracy up to a time
trev(dt) requires a simulation effort varying as (trev/dt).

We are pleased to offer a reward for further investigation
of these problem types: a special $1000 “Snook Prize”, in
honor of our late colleague Ian Snook, who died in 2013. Ap-
plication for this Prize requires the submission of an appro-
priate acceptable electronic manuscript addressing shock-
wave reversibility to link1 prior to year’s end of 2023.

1 http://cmst.eu

http://cmst.eu
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Fig. 7. Velocity reversal following the twofold shock compression of 1680 soft disks. The initial velocities ±0.875 at the left and right,
resulted in a headon collision. The initial particle coordinates at the base of this figure correspond precisely to the maximum-compression
middle view of Fig. 6. The initial velocities were changed in sign so that the next-to-bottom snapshot here corresponds closely to a reversal
of the next-to-bottom view of Fig. 6. Soon after, Lyapunov instability, with λ1 ≃ 2, prevents additional reversed configurations at time 20,

30, and 40. Just as in Fig. 6 particle positions appear at the left with corresponding horizontal velocity components at the right

Fig. 8. The local Lyapunov exponent for the time-reversal of Fig. 6.
The reversal, at time 20, is indicated by a filled red circle. The red
curve corresponds to a smoothed exponent averaged over unit time,
100 time steps with the step dt = 0.01. Notice that the Lyapunov
exponent is of order ±2 in the shocked dense fluid or in the cold
initial solid, suggesting an observable lack of reversibility when the
amplified roundoff error reaches the amplitude of Lyapunov insta-
bility, a time of order 14 for dt = 0.01: 0.015eλ1(t)×t/120 ≃

≃ 1 → t ≃ 14

VII. Summary and Prognosis

Our first problem, the thermostatted generation of a heat
current, stabilized by Nosé-Hoover mechanics, demonstrates
that such dissipative examples, despite their time reversibil-
ity, stabilize mass, momentum, and energy flows consistent
with the Second Law of Thermodynamics. The mechanism
for this dissipative irreversibility is the formation of fractal
phase-space distributions with mirror-image fractal pairs of
distributions. With these pairs the attractor has probability
one while the repellor has probability zero, even for a small
system, the heat-conducting oscillator. This same explana-
tion of thermostatted irreversibility holds for manybody sys-
tems, as was suggested in Refs. 7 and 8.

The purely-Newtonian shockwave problem illustrates
a different, but related, mechanism for irreversibility.
Though “mechanism” is conceptual, its realization is neces-
sarily computational. Lyapunov instability destroys a time-
reversed system’s memory by magnifying computational
noise. Soon the amplified roundoff error becomes of order
unity. Our shockwaves simulations show that this time is of
order t ≃ 3 to 5, just a few collision times. At that time
the reversed flows are destabilized by the preponderance of
entropy-producing flows over entropy-reducing flows, giv-
ing a purely Newtonian resolution of Loschmidt’s paradox.
No thermostatting control variable is required. But still it is
likely that the probability of going forward with an entropy-
producing shock exceeds that of its reversal in a singular
way. The preponderance of states generating entropy, in the
shock, over those which would reduce it in the reversed
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Fig. 9. The largest Lyapunov exponent, λ1 ≃ 1.8 for seven simulations with dt = 0.1/2n reflects the velocity sign change at time 10.
The accuracy of the reversal persists for a time trev varying as ln(1/dt), consistent with the Lyapunov amplification of integration errors to
visible size. The inset snapshot corresponds to the t = 10 configuration of 1680 soft-disk particles undergoing twofold shock compression

up until the reversal time indicated by the red dot

Fig. 10. Smoothed-particle density profiles, Newtonian at the left and reversed at the right. These profiles correspond to the topmost con-
figurations of Figs. 6 and 7. Similar profiles of Pxx and Pyy show that the pressure is nearly isotropic. The thick black and red lines

correspond to smoothed-particle ranges of 2 and 3 respectively

shock, requires no modification of the Newtonian motion
equations.

In making the connection between computational sim-
ulations and continuum mechanics smooth-particle averag-
ing is an indispensable tool. To illustrate this idea let us
calculate density profiles ρ(x) for the topmost snapshots in

Figs. 6 and 7. Imagine the density of every particle to be
spread out in x over a range h according to a normalized
weight function w(r) with finite range and two continuous
derivatives:

r < h −→ w(r, h) = [5/4hLy][1− (r/h)]3[1 + 3(r/h)]

[Lucy′s weight function].
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Summing the weights contributed by each of the particles
to every grid point in the set {xg} produces the smoothed
density profiles shown in Fig. 10 with h = 2 and h = 3.
The grid spacing is unity so that every particle contributes to
four or 6 nearby grid points for these two values of h. We see
that neither profile matches the uniform density at the base
of Fig. 6. The regular square-lattice structure near both ends
of the hot shocked fluid (near x = ±20, at the base of Fig. 7
and the middle of Fig. 6) is less susceptible to the smoothing
loss of memory due to Lyapunov instability.

Smooth-particle averaging can be applied to any of the
atomistic functions of coordinates and momentum. Plots of
the pressure tensor indicate isotropy with Pxx ≃ Pyy . Re-
search into the details of the atomistic distribution func-
tions could elucidate further the mechanism responsible for
the exponentially greater density of phase flows obeying the
Second Law to those flouting it. There remains much to do in
understanding the failure of Loschmidt’s cogent idea – ques-
tioning the ability of mechanics to provide an understanding
of thermodynamics.
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