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Abstract

The aim of the paper is to establish the basic governing equations for anisotropic
thermoelastic medium with double porosity and microtemperatures and to con-
struct the fundamental solution of system of equations in cases of steady, pseudo-,
quasi-static oscillations and equilibrium.
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INTRODUCTION

Grot[1] extended the theory of thermodynamics of elastic bodies with mi-
crostructure with the assumption that the microelements have different tempera-
tures. He modified Clausius-Duhem inequality to include microtemperatures and
added first-order moment of energy equations to the basic balance laws for de-
termining the microtemperatures of a continuum. Iesan and Quintanilla[2] con-
structed a linear theory for elastic materials with inner structure whose particles,
in addition to the classical displacement and temperature fields, possess microtem-
peratures. They proved an existence theorem for initial boundary value problems
via the semigroup theory and established the continuous dependence of solutions
of the initial data and body loads. Iesan[3] established the field equations of a
theory of microstretch thermoelastic bodies with microtemperatures. He proved
a uniqueness theorem in the dynamic theory of anisotropic materials. Iesan[4]
derived a linear theory of microstretch elastic solids with microtemperatures in
which a microelement of a continuum is equipped with the mechanical degrees of
freedom for rigid rotations and microdilatation in addition to the classical transla-
tion degrees of freedom. He also established a uniqueness result in the dynamical
theory of anisotropic bodies.
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The double porosity model represents a double porous structure, one is macro
porosity which is connected to pores and other is micro porosity which is connected
to fissures. Wilson and Aifantis [5] developed the theory for deformable materials
with double porosity. Iesan and Quintanilla[6] derived a non-linear theory of ther-
moelastic solids with double porosity structure. They also linearized the above
theory and formulated the basic initial-boundary-value problems. Kansal[7-9] de-
veloped linear generalized theories of thermoelastic diffusion and micropolar ther-
moelastic diffusion with double porosity and constructed fundamental solutions of
system of equations in case of steady oscillations. Svandaze and his co-workers[10-
15] have also constructed fundamental solutions in the theory of thermoelasticity
with double porosity as well as microtemperatures. Recently Kansal[16] developed
fundamental solutions of a system of equations of isotropic micromorphic thermoe-
lastic diffusion materials with microtemperatures and microconcentrations in case
of steady oscillations in terms of elementary functions.

In the section 2, the constitutive relations, field equations for anisotropic ther-
moelastic bodies with double porosity and microtemperatures are derived. The
system of linearlized equations of steady, peudo-, quasi-static oscillations and equi-
librium in the theory of thermoelastic solids with double porosity and microtem-
peratures are obtained in section 3. In sections 4 and 5, in terms of elementary
functions, the fundamental solutions of basic governing equations in cases of steady,
peudo-, quasi-static oscillations and equilibrium are constructed. Finally some ba-
sic properties of fundamental matrix in case of steady oscillations are discussed in
section 6.

1. BASIC EQUATIONS
Following[2,6,7], the balance of linear momentum, the balance of energy and
the balance of first moment of energy are given by

0ji,j + pFi = piis, (1)
pU = ojiéi + Qitn; + Xilai — Gii — &0 — Ci, (2)
pei = —Qjij — ¢ + Qi (3)

where £ and ( satisfy the relations
Qii + &+ pg = pkain, (4)

Xii + ¢+ pl = pkaiva. (5)

Here U is the internal energy per unit mass, p is the density, ¢; is the heat flux
vector, Q;; is the first heat flux moment tensor, @; is the micro heat flux average



vector, u; are the components of the displacement vector w, F; are the compo-
nents of the external forces per unit mass, &; is the first moment of energy vector,
0ij(= 0;) are the components of stress tensor, e;;(= ;i) = 5(u;; + u;,;) are com-
ponents of strain tensor, v; and v, are the volume fraction fields corresponding to
pores and fissures respectively, k1 and ko are coeflicients of equilibrated inertia, g
and [ are, respectively, extrinsic equilibrated body forces per unit mass associated
to macro pores and fissures, €2;, x; are respectively the components of equilibrated
stress vectors corresponding to vy, .

The local form of the principle of entropy can be expressed in the form of an
inequality called Clausius-Duhem inequality

Qij,i Qij
T 72 il

Qi qi

_ 4 Qi
T T2

T

pS + Ti+ =T - Tji = 0. (6)

where S is entropy per unit mass, 7" is absolute temperature, 7; is the microtem-
perature vector.

In view of equations (3) and (6), the balance of energy (2) reduces to

PITS—U—Tiéi]+ojéis+ Qi it xitmi—Ein—Cin— T~ @

71 TT,iTj-FQijJ},i—(qZ‘—Qz‘)Ti > 0.

(7)
If we introduce Helmholtz free energy function I' as

I'=U+Te; — TS, (8)

Then relation (7) becomes

—p[L+TS—Tiei|+0ijéi5+Qitn i+xivo,i—Ein —(la— Ir,- Qi

T L= T Ti+QiT;:—(¢i—Q:)T; > 0.

9)
The function I' can be expressed in terms of independent variables e;;, v1, 11 4, v2, 2, T, T, T;
and T; ;. Therefore, we have

I 8F.+8P.+8F,+ar,+
- . PR 5
de;; 7 on ! ovy LT oy 2
or or. —or . or . or .
YL -y R FT ) SR 0
vy T Tar e T e, (10)

Equation (9) with the help of equation (10) becomes

or or or or ..
[O'ij - paTij]ez] + [Qz - paTli]VLz + [Xz B paTQJ]VQJ B [g * paiVl}y1



or .. or. . or . . or . or .
(¢ + 102 = plS + FHIT + plei — 21T — v Ti— e
~2T, - %ﬁf Ty + QT — (i — Q)T > 0.

The inequality should be convinced for all rates é;;, 11,174, 1)2,1’/2714,T,T, z,Tl and
T;.;. Hence the coefficients of above variables must vanish, that is

or or or or

Uij:/’@, i:PaTMaXizﬂava‘f——Pélea

or or or

= P50 = —F5,5 = =, 11
or or
— — 12
T, ~ oT, 0, (12)
—qiT; — Qi T;T; + TQijTj; — T(q; — Qi)T; > 0. (13)
Let us introduce the notations

¢=v1— (11)o, ¥=v2—(2)o, 0 =T — Ty, (14)

where Tj is the reference temperature of the body chosen such that ]Tio| < 1, (11)o
and (v2)p are the volume fraction fields in reference configuration.

In the linear theory of materials possessing a centre of symmetry, we can take
I" in the form

a6?
201" = cijpneijepn + d*¢° + fU° — — + ¢3¢ + fijhith; — si; T}

To
+2pijeij¢ + 2vijeih — 2a45€i50 + 20650 30 — rij¢ Ty — diji i T
+2a161 — 27160 — 27200. (15)

From equation (11), it follows that
Oij = Cijpn€pn + Pij@ + Vij¥ — aizb,
Qi = qij¢,j + by — iy,
Xi = @ij¢; + fig; — dij T},
§ = —pijei; —d ¢ — a1 + b,
(= —vijeij — a1 — fib + 720,



af
pS = aijeij + 16 + Y1) + e
0

pei = —sijTj —1ijdj — dijtpj. (16)

The linear expressions for ¢;, Q); and Q;; are
qi = —[kij0 ; + rij Tj],
Qi = (Kij — kij)0, + (=rij + Lij) T},
Qij = MijpnTnp - (17)
The linearized form of equation (6) is
pToS = —qi. (18)
In view of equations (16) and (17), equations (1), (3)-(5) and (18) become
Cijpnepn,j + Pij®5 + Vij,; — aij0 j + pFi = piiy,
—pijeij + 6ijbi5 — d°O + aijthi; — ) + 0 — i Tyi + pg = p1o,
—Yijeij + ijbi; — o1+ fijthi; — f1b + 120 — dijTjs + pl = pkat).
Tolaijéij + 710 +v2t] + ab = kij0i5 + ki Ty
MjipnTnpj — sisTj = rijdg — dijthy = Kij 5 + Lig Ty . (19)

In the case of an isotropic and homogeneous material, the constitutive equations
become
Tij = Nepplij + 2pei; — B00;; + p19dij + parhdij,

O =t1¢; +r1v; — Ty, xi = r1¢,; +ta; — r3T;
‘S = —P1€pp — d*Qb — o1y + '71974. = —P2€pp — a1 — f¢ + 7207
ab
pS = Bepp + Md + 21) + Ty P = —aT; — 120 — 1394,
g = —[kb; + k1 T3}, Qi = (k3 — k)0, + (—k1 + k2) T,
Qij = kaTppdij + k5T j + k6T, (20)
where
Cijpn = A0ijOpn + UOipOjn + (10indjp, aij = 0ij, ij = P104j,Vij = P20ij,
Gij = 11045, iy = 11035, Tij = 12035, fij = t20ij, dij = r30ij, sij = adyy,

Mijpn = K40ij0pn+r60ip0jn+r50inljp, kij = kdij, kij = K10ij, Lij = K20ij, Kij = K30y



Here >\a Hy vabp% t1,t2,11,72,73, d*a a1,71,72, fa «a, a, k» Ry eeeennenes , e are material
constants.

Therefore from equation (19), we obtain the basic governing equations for ho-
mogeneous isotropic thermoelastic material with double porosity and microtem-
peratures in the absence of body and equilibrated body forces as

pAu + (A + p) grad divu + py grad ¢ + pa grad ¢ — S grad 6 = pi,

—prdivu+ (1A —d*)p + (MA — o) + 7110 — rodivw = pqu.ﬁ,
—po div u+ (A — a1)d + (t2A — )b + 720 — rsdivw = pkot),
To[B div i+ y1¢ + y21)] + af = EAO + rydivw,
K6A W+ (kg +k5) grad divw —aw —rg gradgf)—rg grad¢ = rggrad 0+ko w, (21)

where w = (T3, T, T3) is microrotation vector and A is Laplacian operator.

2. STEADY OSCILLATIONS
Let x = (1, 22, 73) be the point of the Euclidean three-dimensional space E3,

1
x| = (23 + 23 +23)7, Dx = (32, 52, 22).

Let us assume the displacement vector, volume fraction fields, temperature change
and microtemperature vector functions as:

u(x, 1), $(x, £), $(x, 1), 0(x, 1), w(x, t)] ~ Re [(u*, o, 0m W] (22)
where w is oscillation frequency.
Therefore from system of equations (21), we obtain the system of linearlized equa-

tions of steady oscillations in the theory of thermoelastic solids with double poros-
ity and microtemperatures as

[MA + (A + p) grad div + pwﬂ u + p1 grad ¢ + pg grad ) — Bgrad § = 0,
—prdivu + {tlA —d* + pklwg} ¢+ (1A —a)yp + 710 —rodivw = 0,

—podivua+ (MA —ay)p + [tQA -+ pk‘QwQ}w + v20 —rgdivw = 0,

wp[fdiva+ 19 + 2] + [kA + wald + k1 divw = 0,



wrg grad ¢ + r3 grad ] — ks grad 0 + [k A + (kg + ks5) grad div — ko + Lwa] w=0.
(23)

If we replace w by —u7, where 7 is a complex number and Re(r) > 0 in the
system of equations (23), then the system of equations of pseudo-oscillations may
be obtained as:

{,uA + (A + p) grad div — pTQ] u + pp grad ¢ + po grad ) — Sgrad 6 = 0,

—prdivua + [tlA —d" - pk'17'2]¢ + (MA — ) + 710 — rodivw = 0,

—podivu+ (MA —aq)p + {tgA —f- ,0]{27'2} P+ v — rgdivw = 0,
TTo[Bdivu + y1¢ + 2] + [EA + Talf + k1 divw = 0,
T[re grad ¢+rs grad 1] — k3 grad 0+ {E6A+(l€4+ﬁ5) grad div—ro+7a|w = 0. (24)

On taking p = 0 i.e. quasi-static case, we obtain the system of equations of quasi-
static oscillations as:

pA + (N + p) graddiv]u + p1grad ¢ + pogradvy — Bgradf = 0,

—prdivu+ (1A —d*)p + (r1A — 1)y + 110 — rodivw = 0,
—podiva+ (1A — a1)¢ + (t2A — ) + 20 — rz3divw = 0,
wTy[Bdivu+ v10 + 9] + [EA + walf + k1 divw = 0,

wrg grad ¢ + r3 grad ¢] — k3 grad 6 + l:l‘ﬁﬁA + (k4 + K5) grad div — ko + Lwa] w=0.

(25)
If we put w = 0 in the equations (23), the system of equations of equilibrium
theory of thermoelasticity with double porosity and microtemperatures as:

pA + (N + p) graddiv]u + p1grad ¢ + pa grady — fgradf = 0,

—prdivua + (tlA — d*)gb + (TlA — al)w + 70 — rodivw =0,
—podivu+ (MA —a1)p + (t2A — )i + 720 — rzdivw = 0,
kAO + k1 divw = 0,



—rk3grad 0 + |:/€6A + (k4 + K5) grad div — H2:|W =0. (26)

We introduce the second order matrix differential operators with constant coeffi-

cients
F(i)(Dx) = (Fg(i? (DX)) )
9%x9
where
0 0
Fi(Dy) = [nA + peo?lpg + (A + 1) F(Dy) = —Fj)) (D) = p1o—

9 p4 9
0,0z, Oz

FD(Dy) = —F3) (D) = pz(;;, FO(D,) = —B(;{;Z),Fﬁ)(Dx) — A —d 4 phyw?,
F(Dy) = F}) (Dy) = 1A — a1, F{) (Dy) = 71, FLL) 4(Dy) = j
Fi (D) = taA — [+ phow?, Fig) (D) = 72, Fib),6(D) = _T?’aa%’
Fﬁ(;)(Dx) = LwﬁTogiq, Féi)(Dx) = wy1Tp, Fé;)(Dx) = wyTp,
F{Y (D) = kA + a0, F), (D) = 11 5 Fil (D) =0
FIE}F)6%4(DX) - Lwr?ai[)’Fp(Jlr)fiﬁ(Dx) = meaip’ FIJ(—I&—)G;G(DX) = 5381),

2

Fzgi)G;q—&-G(Dx) = (I{6A—Hg+bwa)5pq+(ﬁ4+li5)%,Flg;lq)+6(Dx) =0p,q=1,2,3,
pYTq

Here i = 1,2, 3,4 corresponds to static, pseudo-, quasi-static oscillations and equi-

librium theory of thermoelasticity with double porosity and microtemperatures

respectively. The matrices F)(Dy), i = 2,3,4 can be obtained from matrix

F()(Dy) by taking w = —u7, p = 0 and w = 0 respectively.

and




Fs5(Dy) = toA\, Feg(Dy) = kA,
2

Fyi64+6(Dx) = (HGA_H2+LWCV)5pq+(H4+K5)877F6;q+6(Dx) = Fyr66(Dx) = 0,
2,024
pq=1,23i=4,..,95=45n=6,7,8,9.
The system of equations (23)-(26) can be represented as
F(Dy)U(x) =0, i =1,2,3,4

where U = (u, ¢,%, 0, w) is a nine-component vector function on E3. The matrix
F(D,) is called the principal part of operator F(®)(Dy).

DEFINITION 1: The operator F® (Dx), 7 = 1,2,3,4 is said to be elliptic if
|F(v)| # 0, where v = (v1, va, v3).

Since |F(v)| = p2Aokr2rr|v|®, X = X+ 2u,0 = tity — 13, k7 = Ky + K5 + K6,
therefore operator F()(D,) is an elliptic differential operator iff
pAokrgkr # 0. (27)

DEFINITION 2: The fundamental solutions of the system of equations (23)-
(fundamental matrices of operators F(?)) are the matrices G(*)(x) (G(l (x) )
9x9

satisfying conditions
FO(D,)GO(x) = 6(x)I(x), i =1,2,3,4 (28)
where §(x) is the Dirac delta, I = (Jgp)9x9 is the unit matrix and x € E3.

3. CONSTRUCTION OF G(x) IN TERMS OF ELEMENTARY FUNC-
TIONS
Let us consider the system of non-homogeneous equations

A + (X + p) grad div 4 pw?|u — py grad ¢ — py grad ¢ + wBTpgrad§ = H
prdiva+ (1A +di)o + (MmA — o) + wy1 Tol + wre divw = L,
podivu+ (1A — a1)d + (t2A + d2)v + wye Tl + wrs divw = M,

—Bdivu+y1¢ + v + (EA + wa)f — k3 divw = Z,
—rg grad ¢ — rzgrad ¢ + k1 grad 0 + [KeA + (k4 + ks5) grad div + kg]lw = X, (29)
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where di = —d* + pk1w?,dy = —f + pkow?, ks = —Kg + wa and H, X are three-
component vector functions on E3; L, M and Z are scalar functions on E3.

The system of equations (29) may also be written in the form
FO" (D) U(x) = Q(x), (30)

where FOO is the transpose of matrix F(Y) | Q = (H, L, M, Z,X) and x € E3.

Applying operator div to the equations (29); and (29)5, we obtain

[S\A + pw?]divu — p1A¢ — poAip + wBTyAf = div H, (31)
—1r9A¢ — r3Ap + k1AD + [k7 A + kgldivw = divX. (32)

The equations (29)2-(29)4, (31) and(32) may be expressed in the form
NP A)S = Q, (33)

where S = (divu, ¢,,0,divw), Q = (wy, ......,ws) = (divH, L, M, Z,divX) and

NO@) = (NP@) -

55
A + puw? —p1A —po A wBTHA 0
Pl A +d MmA—a1  wynTy Lwre
Do rA —a; tbA+dy  wyTh LT3 (34)
- " Y2 kA + wa —K3
0 —ro/A —r3A k1A K7\ + Kg 5x5
The equations (29)2-(29)4, (31) and (32) may also be written as
r(a)s = v, (35)
where
L~ (0
U= (V... ,Us5), U, = e >N, wi,
i=1
1 -
ria) = el NO(A), M* = Xekrzo p=1,.....,5 (36)

and Ni(pl)* is the cofactor of the element Ni(pl) of the matrix N,

From equations (34) and (36), we see that

ri(a) = ﬁ(A +X7),

i=1
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where A7, i = 1,...., 5 are the roots of the equation I'") (—v) = 0(with respect to v).

Applying operator ') (A) to the equations (29); and (29)s, respectively, we obtain

PO (A)(A+ N)u =¥,

T A+ 3w =", (37)
where A2 = 22 A2 — 58 anq
M K6
1
U= M{F(l)(A)H - grad[()\ + ) U — p1 Uy — po U3 + 1wfTy \1:4] }
1
v = H{rU)(A)X — grad {(54 + k5) U5 — 1o Uy — 13 U3 + Ky m} } (38)
6

From equations (36) and (38), we obtain
0 (A)U(x) = ¥(x), (39)

where O = (U', Uy, Uy, Uy, ¥") and

o) = (ef)) .

05, (8) =T (A)(A+X) = [T(Aa+2D),

O3 pa(A) = TO(A) = T(A+22),
i=1
7

O sprs(A) =AY A +22) = [ (A+2),
i=1,i#£6

0 (A)=0p=1,23gh=1,..9g#h
The equations (36) and (38) can be rewritten in the form

5
o = [1F(1)(A)J +w(A) grad div} H+ Y wi(A) gradw;,
1 i=2

4
¥ R (et FF(U (A)F +wi) (A) grad diV] X,
1=1 K6
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4
U = o (A)divH + Y 0l (A)w; + 0wl (A)divX 1=2,3,4  (40)
=2

where, we have used the following notations:

1 - - - -
W (&) =~ | A+ N () = iR (A) — W (A) + BTN ()],
1 - - - -
W (A) = = 0+ ) ND(A) = raNR(8) = raNS() + s N ()]
N
wid(A) = ”XAA) p=1,...,5¢=2,34
From equations (40), we have
¥(x) = RV (Dy)Q(x), (41)
where
RO(D,) = (Ry)Dx)
9%x9
RY(Dy) = ~TW(A)5; + wi(A) e
* 1 J u 0x;0x;
(1) _ WA 2 po _ WAy
Ri;p+2(DX) - wlp ( )87%’ Rp+2;i(DX) - wpl ( )61'1’
2 2
(1) _ () 0 ) _ W 9
Ri§j+6(DX) = W5 (A) 3:618933 ’ Ri-‘rﬁ;j (Dx) = Ws; (A)8$18$]’
(1) WAy 2 pO) (1), Ay O
i+6;p+2(DX) = Wsy, (A)%v Rp+2;i+6(DX) = Wps (A)é)xi’
1 1 1 02
Rz(+)6;j+6(DX) = H—Gf(l)(A)éij + wé5)(A>8xi8xj’
Ry ia(Dx) = wi)(A) 4, = 1,2,3 p,n = 2,3,4 (42)

From equations (30), (39) and (41), we obtain
oVU = ROTFpOL .

The above relation implies

)tT )tT'

—eW,

ROWEE
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Therefore, we obtain
FO(D,)RM(D,) = @M (A). (43)

We assume that

Let
1 1
Y1) - (Yé 09) LY = 3 0,
9%x9 g:1
: 1) S
p+3,p+3 ZTZg Gg(x p+6,p+6( x) = Z T3g Sg(x),
g=1,9#6
Yigl)(x) —0p=1,230j=1,., 90 %]
where
(x) = _Ln'x‘ (1) _ ﬁ ()\2 _ /\2)71 1) _ ﬁ ()\2 _ )\2)—1
i=1,i#g i=1,i#h
7
rV= I O =1 Tg =1, 6 h=1,.,5 1= 1,..,57 (44)
i=1,i#6,]

LEMMA 1: The matrix Y defined above is the fundamental matrix of operator
oM (A), ie.
0 (A) YW (x) = 5(x) I(x) (45)

PROOF': To prove the lemma, it is sufficient to prove that

rOA) AR Y (x) = 6(x), TV(A)YL (x) = 6(x), TO(A)(A+A2) Y (x) = 6(x).

(46)
Consider ;
Z (1 ( 1) Zj
15 )
i=1 AT
where
6 6 6
2= TG =) TTO3 = A9 TTOAT = A (A3 = 29,
i=3 j=4 =5
6 6
2= [JOF =29 [T(A3 = A) [T(A3 = A (A5 — A3)



6 6 6
a= I =) IT 3= I3 - A8 - 2),
i=2,i#4 j=3,j#4 =5
6 6 6
= I =2 II (-2 I G8-200%-2).
1=2,i#£5 j:3,j7é5 l 4,145
7 5
= J[ (A H M) TTOE = A% = A8)
1=2,i#6 =4
6 6 6 6
=110 H M) TIOE = A0 TTOG = 203 = A9).
i=2 j=3 =4 p=5

On simplifying the right hand side of above relation, we obtain

6
A =0
i=1

Similarly, we find that

6 2
S - =0 Zr {H

(ﬁ—ﬁﬂza
=2 = j=1
3 6

6 4
S| T -] = o,zrw[w -3 =0
1=4

j=1 j=1

5
Hr16 )\2 =1.

Also,
(A + X2)p(0) = 50) + (32~ X)gy(x) prg = 1,...7.

Now consider

6 6
rOA) A+ )YV (x) = [(A + 23 Y ri)e(x)
=1 g=1
6 6
=TT +28) X2 ) 60 + (48 - X))
=2 g=1
6

~ T 8500 34 +2:M,V )5

i=2 g=1

14



Using equations (47)-(49) in the above relation, we obtain

6 6
rO@)A + Y60 = [T + 20| )0 - M) (x)|

6 6 =2 g=2
=TT+ 23| 3208 = 39 [36) + (0 - M), )|
=3 g=2
6 2
= TTa+ a0 2 rfy | TT0% - )] o)
=3 g=3 7j=1
- 2 (1) ST 2 42
= L@+ 30 3 A7 [ TT08 )] 569+ 02 = |
6 6 3
:H@+ﬁ)zy$“ﬂﬁ ﬁﬂqw}
=4 g=4 7=1
- 2 (1) Tz g2 2 )2
= @+ 30 3 T105 -3 [560 + 0 - s
_ 6 (A+/\2)|:ir(1)[ﬁ()\2 /\2):|§ (X):|
=5 ' g=>5 Y j=1 ’ I !
:@+gﬂ§¥ngg_gﬂh@+@g¢gM@H

The equations (46)2 and (46)3 can be proved in the similar way.
We introduce the matrix
GV (x) = RW (D) YW (x).

From equations (43), (45) and (50), we obtain

15

(50)

F(Dx) G (x) = FY(Dx)RW (D) YV (x) = ©1(A) YW (x) = 5(x) I(x)

Hence, G(V(x) is a solution to equation (28);.
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THEOREM 1: If the condition (27) is satisfied, then the matrix G (x) de-
fined by the equation (50) is the fundamental solution of the system of equations
(23) and the matrix G(Y(x) is represented in the following form:

o0 k)

Gl (x) = R)) Do)V (x), G 4 (x) = R (DoY) (x),

G 5(x) =R\ (DY (%) g=1,..,9 h=1,2,3

g;h+6
4. CONSTRUCTION OF MATRICES G (x) i =2,3,4
PSEUDO-OSCILLATIONS

We introduce the matrix
G (x) = RP(Dy)Y?(x), (51)

where, the matrices R (Dy) and Y (x) can be obtained from matrices R (D)
and Y(l)(x) respectively by taking w = —u7 and repeating the above procedure
after equation (28).

THEOREM 2: If the condition (27) is satisfied, then the matrix G (x) de-
fined by the equation (51) is the fundamental solution of the system of equations
(24).

QUASI-STATIC OSCILLATIONS
In this case, the matrix N3)(A), operator I'®) (A) and matrix operators @) (A),
R®)(Dy), YO (x) and G®)(x) are obtained as:

(i R(A) = (N;2><A>)5X5, N®(A) = (N;i><A>)5X5,

VP (A) = X, N(A) = —p1, NP (A) = —p2, NP (A) = wpTo, N2 (A) = 0,
N(A) = AN (8), NP (A) = NP (a) = NP (),
NB(A) = N (A) = i A—d* N5 (A) = NS (A) = NP (A) = N(A) = rA—an,
ND(A) = NP(A) =t — NP (8) = N2 (a) = NP (),
NO(A)=ND(A)=ND(A)i=1,231=23p=4,5¢=1,....,5.
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4
(i) @) = aT[a+i),

=1

where pi?, i = 1, ....,4 are the roots of the equation |N()(—v)| = 0(with respect to

v).

(i) o) = (o) .
9%x9
4
O (A) =TH(A)A = A T[(A + 1),
=1
) - © -
O 343(A) =T (A) = AT[(A+42), 0, s 6(A) = TO(A)(A+pE) = AT (A+4:
=1 i=1
K
0l(A) =0,u2 = ;Zp: 1,2,3g,h=1,....9g#h
‘ 1 . . . -~
(i0) Wi (&) =~ ) N () -mFD ()= pN S Q)+ s TV ()]
3 1 < (3 < (3 < (3 < (3
W) =~ |51 k) N (A) = 1N () = raKEP(A) + i NP ()],
7 (3)
Npq (A)
3
wP(A) = p]‘ip p=1,...,5¢=234
where Nl(j?’) ,7=1,........ , 5 is the cofactor of the element Ni(j’) of the matrix N,
() RODy) = (RD)
9%x9

1p ox; Pl Ox;’

3 3 82 3 3 82
Rz(-i-)ﬁ;j(Dx) él)(A)ax,f)x ’ EJ)+6(D"> - wg( )8:5,03:]"
3 1 3 0
Rz(Jr)6;j+6(DX) = %F(g)(A)(siﬂ' + wéf’)(A)axin]

3 3 3
Ripra(Dx) = 0l (8) 5 R o(Ds) = w3 (A) 5 -
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R, o(Dx) =wP(A) i, =1,2,3p,g=2,3,4

) 3) & 3) « ~
(vi) Y®(x) = <Y;§‘3)(X)>9X9> Yp(;f’)( )= T§1)§1( 52)§ "‘Z T g+2§g
3
Yp(+)3,p+3( )= 7’21 St (x Z 79, g+1§g

* 3) -
Y0 = 0100 + 30,1500,
g=1

ngg)(x)zop:17273z)j:17 """ 7927&3

where
N 1 § x| . ethalX| . ;
S1 ——F‘X’,@ ——87,§9(X)——47T‘x’ g=1,..... ,
P&  HIH3H + pipspd + R pdpd + M2M3M4
TG AT
4
(3) _ —4 2 2\—1
7“12 =T = HM 7"1 z+2 = H (i —pi) s
i=1,i£l
®) -
To41 = H 7“31 HM )
i=1,i#l
3 °
-2 2 2y—1
T3n+1 = —H H (,UZ - /’Ln) l=1,... ,Adn=1,...,5.
i=1i#n

On introducing the matrix
G (x) = RY(Dx) Y (x), (52)
we obtain
FO(D)GE) (x) = FH (DR (D) YP (x) = ©0)(A)YH (x) = 5(x) I(x)

Hence, G®)(x) is a fundamental solution to equation (28)s.
THEOREM 3: If the condition (27) is satisfied, then the matrix G®)(x) de-
fined by the equation (52) is the fundamental solution of the system of equations

(25).

EQUILIBRIUM THEORY
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In this case, the matrix N (A), operator I'¥) (A) and matrix operators @*) (A),
R (Dy), Y?(x) and G®(x) are obtained as:

(i R(A) = (fv;i’m))ﬁxﬁ

(4 & (3 4 3 4 (4
Ny (8) = NP (8), N (8) = N (8), NP (8) = NP (8) = o,
Vi (&) = kN (A) = N (8) = s,
N () = r N (8) = RE(A) = w7 — o, NP(A) = ARP(A),
p=1,....5i=1,231=4,5.
3
(i1 r(a) = A2 T[(A+w?),
i=1

where w?, i = 1,2,3 are the roots of the equation |[N*)(—x)| = 0(with respect to
K).

(i) o) = (e ()

3
O(A) =W (A)A = A*T[(A +wP),
=1
3

00 3pas(8) =T (A) = A2 T[(A + ),
=1

4
O 6pie (D) = TD(A)(A +wd) = A2 [ (A +w?), 04 (A) =0,
=1

)
9%x9

[0+ ) - R @) - N )],

(v) ROy = (RDx)
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2
(4) _ L@ (4) ?
Ry (Dy) = —TW(A)8;; +wii (D)
] J 11 8:@83:]
4 4 8 4 a
Rz(;p)JrQ(DX) gp)(A)aiCL'Z’ 1(1422,1(DX) = wl(ﬂ) (A) axi’
) 2
W W — @Ay 0
R, 6., (Dx) = wgy'( )833,6%’ i.i+6(Dx) 15 (A)axiax/
(4) 1 @ ) &
Rz+6,j+6(D )= I?GF (A)dij + ws; (A)axi(%‘]
PO D — @Al B Dy — w@ a2
i+6;p+2( ) 5p ( )87271’ p+2;i+6( X) = wp5 ( )8271’

R, o(Dx) = wi®(A) i,j =1,2,3 p,g=2,3,4

3
i) YO = (V) i) = i oG 03 rid g )
g=1

3
4 4) x 4) « 4) A
Y ea(x) = rier () + ries () + 30 Y L é (),

g=1
(4) (4) (4) *
Yoh6.p16(X) = 713157 (X) + 7139 65 (%) + Z T3, g+2<g( x),
g=1
(4) - o,
Vi'(x)=0p=1,234,j=1,...,9i#]
where
. ( ) eng‘x| 4
$o(x) = — =1,...
g anlx] 9T
4 927 2 2 4 4 92¢ 2 2
RO ~ wiwd (w3 + w]) + wiwd (Wi + w?) + wiwd (w? + wj)
: XN ’
@ _ @ 1w °
_ —6 2 -1
Mo =Toa = "5 35 92T1;1420 = —W H (Wi —wi)™
wiwawWs i=1,i#l
2, .2 2, .2 2 3
@ wiwd + wiwd + wiwi 4
To1 = — 1 4 1 T I @i—w)™,
whwiw
1Waws3 i=1,i£l
(4 w%w%w% + w%w%wz + w%w%wz + w%w§w4 4)
T3 = — 2 2 2 9 H"J

Wiwywswy
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4
=t [ @P-w?) ' i=1,23n=1,..4,
i=1,i#n
If we introduce the matrix
GW(x) = RW(D,) YW (x). (53)

then, we obtain
FU(D,)GW(x) = FYDORW D) YW (x) = ©1(4) YW (x) = 6(x) I(x)
Hence, G*(x) is a solution to equation (28)4.

THEOREM 4: If the condition (27) is satisfied, then the matrix G*)(x) de-
fined by the equation (53) is the fundamental solution of the system of equations
(26).

5. BASIC PROPERTIES OF G (x)

THEOREM 5: Each column of the matrix G()(x) is a solution of the sys-
tem of equations (23) at every point x € E3 except the origin.

THEOREM 6: If the condition (27) is satisfied, then the fundamental solution
of the system F(Dyx)U(x) = 0 is the matrix

W) = (W)

9%x9

1 02 11,
Wilo) = |5 g — o550
1 92 1 -7,
Wite,j+6(x) = L? 9207, re z‘g}% (x),

ta t1
Waa(x) = = ¢ (x), Was(x) = = f (%),
g o2
T1 S
Wis(x) = Wsa(x) = —5 (x), Wee(x) = 7

Wisg3(x) = Wyps,(x) = Wpn(x) = Wap(x) = Weit6(x) = Witee(x) =0,
5 92

ij:m—mzj i,j=1,23¢q=1,...6 p=6,7,8,9n=4,5 (54)
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1
Aw}(A) = M (AN (A) - )0,

1

1 .
Al (8) =~ (A + XNP(A) = TO(A)5s, p=1,.5  (55)

K6

PROOF': Consider

M*u

T(A)S1 = —— det NOD(A)5,, =

M* M*

1 (- -~ . . .
wf(8) =~ 57 (AR @) - nFR ) - ¥ (A) + BT R ()}

YIS IAHIEN

o AND(A) = ppAND(A) + LwﬁTOANQ(A)}.

(A) +Lw5TgAN1§i>(A)}

Therefore,
1 N N
Awﬁ)(A) = _M{/\AN(l)<A) —pIANG (A) —p2 AN
1T i
= 37 P T8 — (uh + ) NP ()

:M*

Similarly, we can prove equation (55)a.

THEOREM 7: If condition (27) is satisfied and x € E3 —

1 ~ 1
— A+ )N () - PR

{0}, then

(1)
G, (x 8:1;983: Z ep115p(X) + Ryn, co11 56(%),
1) 1
G; l+2 Z cprisp(x Gl(+)2 g Z cpi1sp(x
9 p=1 g p=1
2 5
(1) (1) 0
Giio, 2 (X Z CpinSp(X g; Gyhie(X) = 2,0z, pzz:l Cp155p(X),
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2 5
(1) _ 9 (1)
Gg+6;h(x) - 8a:gaxh pzz:l CP51§I?( ) Gl+2 g+6 8 z, pz:l Cpl5§p
a® Z ConlC
g+6; l+2 8 p5l p

gpl

1 0* ~
G_E]-zﬁ;h-l-ﬁ( ) 0369835 Z Cp55§p ) + Rgh C755 §7(X)’ g, h = ]-7 27 3 l7 n = 2a 35 4

where
(1) (1)

T2 ~ 1 2 1
Cpgh = _M*p)\% g(h)(_)\l%) Cpgl = ]\f* N( )( >‘12>)’

1 1 1 1
= _ =___ = = _ 5h=1,51=2,3,4 56
Ce11 Pw2 H)\(Zg , C755 Kg ﬁ6>\%’ g,p= 1., 7 ( )
PROOF: From equation (49),
Agj(x) = —)\?gj(x) j=1,...,7 (57)
Thus, we have
(g~ R )si9) = S ), x £ 0 (58)
- — (X)) = iX X
)\3 Ox,0xy, gh )% gh &3,

Consider

From equation (55);, we have

i) (X)) = 35 (A DN (X)) +

*\2
Using equation (60) in equation (59), we get
1 0? 1

(1) (1) 2, y2y r(1) 2 1 2\ 75 A
Gl ) = Z A e PR | g T D B i)
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(61)
Now,
1
T =0 j=1,..5
1
O =1 j=
and 1 _ @)
(=AM =75 G=1,...,5
1
(A2 + A =0 j=6 (62)
By virtue of equation (62), equation (61) becomes
2 5
() 0 1 o0 oL
G309 = 5 5 2 RToT AR SR S
P -
= m ]:221 cinis;(x) + Rgn ce11 $6(%).
The remaining formulae of above theorem can be proved in the similar way.
LEMMA 3: If the condition (27) is satisfied, then
W _Nm ) (1)
_ 2 4 8
ZT%_ZT%)‘P Z 2p)‘p Zr2p —OZ%)‘ =1
=1 =1 p=1
5 .(1) % *
DR P (63
p=1 Ao i pwNy1”(0)  KsN;5 (0)
and
5 5
Zcpll = —(pw?) 7, Z Cpri A, = -t
p=1 p=1
5 5
> epss = —hKg L D cpsshn = —kg
=1 p=1
° tr o too _
dooma =" ez =—, Y Cua=k (64)
p=1 o p=1 p=1

PROOF': Consider

N (22) = ko AS + MiAS + My AL + M3A2 + N (0), (65)
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where M, p = 1,2, 3 are coefficients, independent of \;, and skipped due to lengthy
calculations.

It is easier to prove the relations (63) using equation (44).

From equations (63) and (65), we get

5 ) 5
Z%Nu Z@p k’f?U/\6+M1)\4+M2)\2 + M3 +N1(1)(0))\§2]
p=1 "P p=1
5 (1) *
(1) Top M
=iV (0) Z =
p=1 )\% pr
and
5
Z r2p N11 — Z 7’21) krroXy + MPAS + M;)\é + MzA2 + Nl(i)(O)] = kk7o

Therefore, from equation (56), we have

5 5 (1)
2 1 _
Zcpll = - Z M*p)\zN( )( >\12)) = _(pw2) 17
— p= 1
5 5 (1) O kkno ~
o= M*N11 (=) =5 ="
— p= 1

Similarly, we can prove equations (64)2 and (64)s.

THEOREM 8: The relations

Gz(;é) (x) — Wpq(x) = constant + O(|x|) p,g =1,....,9 (66)

hold in the neighborhood of the origin.

PROOF: For p,q =1, 2,3, consider

0* -

G (x) — Wpy(x) = WYH
p q

where

§ X
Yi1(x chllcg QE\ )7



Yao(x) = c11 56(x) + 2 (X)

From equation (68), we have

j=1 =0
172 & 5 , 1
= [ > e |X\( C]ll)\j+~>:| > e+ Yaz(x)

8w x| = = A
Similarly,

— 1172 1 L —

Yao(x) = _&r[\xl%n - \X!(Cﬁn/\% - Mﬂ — Ecﬁll)\6+ Yia(x),
where .

O AL
Ys3(x 2—72 3112 Z'J]x|l !
=1
- oY
Yia(x) :_706112 6! =L
Clearly
Tia) = O(xP). 5 ¥in(x) = O(}x)
0?
8$68miYhh(X) = constant + O(|x|) e,i =1,2,3 h = 3,4
Consider
O (1) _ = 0 (1) {3« 1
Oxi \Ix| ) [xP7 oz7 \Ix[)  [xPP [x]
Hence,
Z@x (]x\)

Therefore,

0? N )1 1
— Ry | — =06,A— =0
( T x|

0xp0x4

26

(68)

(72)

(73)
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Equation (67) with the aid of equations (64),(69)-(73) becomes

?* - S
= R Y33(x) + Rpq Yaa(x) = constant + O(|x]).

G (x) — Wpe(x)

Similarly other formulae of equation (66) can be proved.

Therefore, matrix W (x) is the singular part of the fundamental matrix G (x) in
the neighborhood of the origin.

CONCLUSIONS
The current paper gives the following outcomes:

1. Without utilizing Darcy’s law, the linear theory of thermoelasticity with double
porosity and microtemperatures is derived. This theory can be useful for finding
fundamental solutions, studying wave phenomenon etc.

2. After reducing the governing equations in isotropic medium, the fundamental
matrix of system of equations in cases of steady, pseudo-, quasi-static oscillations
and equilibrium are obtained and properties of fundamental matrix are discussed.
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