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Abstract: The influence of periodically distributed inclusions on elastic properties of crystals in which particles interact
through Yukawa potential is discussed briefly. The inclusions in the form of channels oriented along the [001]-direction
and layers orthogonal to the [010]-direction are considered. Monte Carlo simulations have shown that, depending on the
type of inclusion and the concentration of inclusion particles in Yukawa crystal, qualitative changes in elastic properties
occur. In selected directions, one observes appearance of auxetic properties for systems with nanolayers and enhancement
of auxeticity for systems with nanochannels.
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I. Introduction

Colloidal crystals [1] are a relatively new class of ma-
terials, whose applications [2, 3] arouse a growing inter-
est among researchers [4, 5]. Some physical properties of
charge stabilized colloids can be described by effective in-
teraction potential such as the Hard Core Repulsive Yukawa
Potential (HCRYP) [6]. Computer simulations of the face-
centered cubic (fcc) Yukawa crystal showed that it exhibits
auxeticity [7–10] (i.e. negative Poisson’s ratio) in certain
crystallographic directions. This effect is observed both for
monodisperse crystals [11] and crystals with size polydis-
persity of particles [12]. Auxeticity of materials has attracted
increasing attention of researchers due to their potential ap-
plications [13–15]. Recently, a new direction in searching
for auxetic materials – models of nanocomposites based on
Yukawa crystals – has been proposed [16]. The main idea is

the modification of crystalline structure of Yukawa system
by introducing into the structure the non-charged colloidal
particles which can be viewed as inclusions. The inclusions
in the system were arranged in the form of nanochannels or
nanolayers [16–18]. The studies showed that by controlling
the size of inclusions, as well as their shape and orientation,
one can substantially change the elastic properties of the sys-
tem. One can enhance, weaken or even induce auxetic prop-
erties in selected crystallographic directions. In this work the
comparison of Poisson’s ratios (PR) in selected directions of
Yukawa systems with nanochannels and nanolayers is pre-
sented.

In the present study, three models of nanocomposites
have been considered: two Yukawa crystals with nanochan-
nels (of different sizes) oriented in the [001]-direction
and the Yukawa crystal with nanolayer orthogonal to the
[010]-direction (see Fig. 1). The considered nanocompos-
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Fig. 1. Examples of studied structures of Yukawa systems with nanoinclusions: (a,d) D-type nanochannel of the diameter
√
2σ oriented

in [001]-direction, (b,e) S-type nanochannel of the diameter 2σ oriented in [001]-direction, (c,f) nanolayer orthogonal to [010]-direction,
(g) illustration of studied systems in periodic boundary conditions. The particles interacting via Yukawa potential are marked in green
colour. Red particles are the inclusion particles. In figures (d–g), the centers of Yukawa particles are marked by green dots to better show

the structure of inclusion

ite models are based on the perfect fcc structure. In lat-
tice sites of this structure there are particles interacting via
HCRYP [6]:

βuHCRYP
ij =

{
∞, rij < σ,

βε
exp[−κσ(rij/σ−1)]

rij/σ
, rij ≥ σ,

(1)

where σ is the diameter of the particles’ hard core, ϵ is the
contact potential, κ is the inverse of the Debye’s screening
length, β = 1/(kBT ), kB is the Boltzmann constant, and T
is temperature. Then, as shown in Fig. 1, inclusions in the
form of nanochannels or nanolayers have been introduced
into the close-packed structure. In the case of nanochannels,
their axis has been designated in the [001]-direction and for
a given diameter of the channel a cylindrical volume contain-
ing nanochannel particles has been distinguished. Thus se-
lected Yukawa particles have been replaced by hard spheres
(NHS) to model the non-charged colloidal particles. In the
case of nanolayer, particles have been similarly replaced
for the selected crystallographic plane (010). In the studied
cases, the inclusion particles interacted with themselves and
with Yukawa particles through hard sphere (HS) potential:

βuHS
ij =

{∞, rij < σ,

0, rij ≥ σ.
(2)

Applying the periodic boundary conditions to thus obtained
supercells results in nanocomposite models with a periodic
array of nanochannels and nanolayers (see Fig. 1).

II. Simulation Details

The elastic compliances (Sijkl) of considered models
have been obtained by Monte Carlo simulations in the
isobaric-isothermal ensemble, using the Parrinello-Rahmann
method with the variable shape of periodic box [19]. Pois-
son’s ratio for an arbitrary pair of orthogonal directions can
be calculated using the formula [20]:

νnm = −mimjSijklnknl

npnrSprstnsnt
, (3)

where n is the direction of the applied stress , m is the direc-
tion in which the reaction of the system on the applied stress
is observed. The influence of inclusions on PR of studied
models has been analyzed with respect to the concentration
of hard particles in Yukawa system

c =
NNS

N
× 100. (4)

Computer simulations have been performed for the follow-
ing dimensionless values of the pressure Pβσ3 = 100, the
contact potential βϵ = 20, and the inverse screening length
κσ = 10. The results presented herein relate to systems
consisting of N = 4n3 particles, where for the systems
with nanochannels n ∈ {4, 5, 6, 7, 8} and for the systems
with nanolayers n ∈ {3, 4, 5, 6, 7, 8, 10, 12}. The remain-
ing details concerning simulations are the same as in the
works [17, 18].
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Fig. 2. Dependence of the Poisson’s ratio of systems with nanoinclusions on the concentration (Eq. (4)) in the following crystallographic
directions: (a) [100][001], (b) [110][11̄0], (c) [101][101̄], and (d) [111][11̄0]
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Fig. 3. Dependence of Poisson’s ratio of systems with nanoinclusions on the angle α in the following crystallographic directions: (a) [100],
(b) [110], (c) [101], and (d) [111]. α is the angle between m and the direction of the line being the cross section of the plane Oxy and the
plane orthogonal to n. The concentration of hard particles in Yukawa system with nanochannels of the type D is 7.8% and of the type S

is 9%, whereas for the system with nanolayers is 8.3%

III. Discussion

The introduction of inclusions to the system has a sig-
nificant influence on the Poisson’s ratio of crystals in which
particles interact with the Yukawa potential. In Fig. 2, the
comparison of PR dependence on concentration (c) for stud-
ied crystals with nanoinclusions has been presented for four
crystallographic directions. The comparison has been made
to show that using inclusions of various shapes and con-
centration one can achieve both qualitative and quantitative
changes in the elastic properties of the system and its auxetic
properties in particular. The value of Poisson’s ratio at c =
= 0% corresponds to Yukawa crystal without nanoinclu-

sions. As can be seen in Fig. 2, the introduction of inclu-
sions in the form of nanolayers causes the appearance of aux-
etic properties in the [100][001]-directions (see Fig. 2a) and
their disappearance in the [110][11̄0]-directions (see Fig. 2b),
while leaving the Poisson’s ratio in auxetic direction
([101][101̄]) and non-auxetic direction ([111][11̄0]) almost
unaffected (see Fig. 2c and 2d respectively). On the other
hand, the introduction of nanochannels of different sizes
allows one to enhance auxeticity in [101][101̄]-directions
(Fig. 2c) and to weaken it in [110][11̄0]-directions (Fig. 2b).
Additionally, such modifications allow one to regulate the
Poisson’s ratio in a broad range of its positive values in
[100][001]-directions (Fig. 2a).
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Fig. 3 presents the Poisson’s ratio of studied systems for
any transverse direction to the main crystallographic direc-
tions for similar concentrations of hard spheres. Figs. 3a,
3b and 3c show that the Poisson’s ratio in the [100], [110],
[101]-directions depends strongly on the angle α. Here, the
Poisson’s ratio changes its value in a broad range from neg-
ative to positive ones depending on the type of inclusions.
In contrast to that, the Poisson’s ratio in the [111]-direction
for all systems (Fig. 3d) depends weakly on the transverse
direction, which shows low transverse anisotropy of elastic
properties of the systems when an infinitisimal load is ap-
plied in this direction.

IV. Conclusions

In conclusion, modifications of the crystal structure
by introduction of nanochannels allows for a decrease of
the Poisson’s ratio in [101][101]-directions to the value
of −0.34(2) [18], whereas the introduction of nanolayers
into Yukawa crystal results in appearance of new auxetic di-
rections ([100][001]) in which the Poisson’s ratio reaches the
values down to −0.57(2) [17]. It should be added that in the
system without inclusions the latter directions are strongly
non-auxetic, with ν = 0.43(1) [11]. Another interesting re-
sult presented in this work is the vanishing of auxetic proper-
ties in [110][11̄0]-direction due to introduction of nanolayers
into the crystalline structure and it will be published sepa-
rately.
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