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Abstract: The goal of neuroscience as a discipline is to understand how the neural system is organized in the brain, giving
rise to mental processes and the control of behavior. One of the most frequently utilized methods in neuroscientific studies
is the functional magnetic resonance imaging (fMRI), which is a non-invasive technique for quantifying brain processes
dynamics. In a standard fMRI procedure, the hypothesis of the correlation between a cognitive task and the observed physio-
logical signal is tested. This way, a certain computational model of a given brain mechanism can be validated. The procedure
of modelling fMRI signal time course will be explained in this article as exemplified by planning functional grasps of tools.
Subsequently, the results of contrasting model parameter estimates will be presented for a different experiment on manual
praxis skills, i.e., bimanual tool grasps and manipulations.
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I. INTRODUCTION

Computational methods are an essential part of neuro-
science. Since the beginnings of the neural paradigm, the
major goal of the neuroscientific approach was to provide
a detailed description of what the structure of the brain is
and explain, as clearly as possible, how brain functions are
implemented in the underlying neural tissue [1, 2]. More re-
cently, also the connectionist approaches are gaining popu-
larity, emphasizing the role of brain structural and functional
networks in the way the neural signals are being processed,
enabling emergence of cognitive phenomena [3–5].

There is one neuroscientific method that is particularly
useful for studying brain functions, such as language or vi-
sion: the functional magnetic resonance imaging (fMRI).
The popularity of fMRI can be explained by the fact that
while being a non-invasive approach it still allows for study-
ing neural processes with relatively high temporal resolu-
tion – in the scale of seconds – while providing an excel-

lent localization of the activity within the brain, i.e., with
a millimeter-scale precision, even for the subcortical struc-
tures. If we compare fMRI to other non-invasive brain imag-
ing methods, it provides better spatial resolution than elec-
troencephalography (EEG) [6] (with EEG being superior in
terms of temporal resolution), and the reliability of fMRI is
relatively better described in scientific literature than some of
the other approaches, such as functional near-infrared spec-
troscopy (fNIRS) [7] or functional photoacoustic computer-
ized tomography (fPACT) [8].

Computational neuroscience also brings many chal-
lenges in the domain of high performance computing (HPC;
see, e.g., [9, 10]). Recent works and tools developed by the
leading laboratories around the world underline the impor-
tance of incorporating supercomputing methods to neurosci-
entific data analysis workflows [11–13]. With higher com-
puting power, as well as increased memory capacity, new
research perspectives are possible, such as genetic program-
ming [14] or simulation and reconstruction of neural cir-
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cuitry [15]. Moreover, it is also easier and faster to perform
some kinds of analyses, as the larger batches of data can be
analyzed at once, without the need of conducting separate
calculations for particular subjects or experimental sessions.

In the present study, the procedure of computational
modelling of brain functions will be described as exem-
plified by fMRI tasks involving manual praxis skills [16].
Praxis is an ability to prepare and perform complex manual
sequences in the communication and/or tool-related context,
which is often linked (but not confined) to language skills
[17, 18]. In order to provide reliable results, the fMRI pro-
cedure requires performing an experiment with at least ten
to twenty participants, each being exposed to tens or hun-
dreds of repetitions (trials) within a particular experimental
condition, with pseudo-random intertwining occurrences of
at least two such conditions [19].

The goal of this paper is to provide a technical insight
into the computational aspects of fMRI and the specific cog-
nitive domain of praxis skills. The example presented herein
is an arbitrary choice based on the author’s experiences and
field of expertise. More specifically, the concept of fitting
the general linear model (GLM) in fMRI data will be de-
scribed here with the standard multi-trial fMRI dataset being
restricted to only one experimental trial, for a single partici-
pant, from one of the study runs that were performed for this
specific participant.

Importantly, similar descriptions of fMRI modelling,
usually found in handbooks, various course materials, and
in the web, involve modelling the entire experimental run
[20, 21]. Presenting a model fit for a series of trials at once
can be misleading for someone less familiar with particu-
lar types of experimental designs utilized in fMRI research
or with the empirical methods in social sciences in general.
Hence, simplifying the example to a single trial can provide
a new perspective for students gaining knowledge on neuro-
science methods and for specialists from other scientific do-
mains, such as educational research and informatics, willing
to get an insight into computational and statistical aspects of
the method itself.

Here, the computational approach in a cognitive neuro-
science study will be briefly illustrated by an example of
a single trial, providing a relevant mathematical description
as well as an appropriate visualization. Subsequently, the pa-
per will elaborate on how the fitted models are used to com-
pare different experimental conditions with each other. Such
comparisons result in statistical parametric maps, contain-
ing information on the statistic calculated for all voxels (i.e.,
3D pixels) in the brain, which are subsequently presented
in a volumetric space or on the three-dimensional brain cor-
tical surfaces. This provides the researches with the means
to determine the exact location as well as the extent of the
brain activity which occurred while performing a given cog-
nitive task, such as grasp planning in praxis research, which
is considered in this article. Finally, examples of such para-

metric maps obtained in an fMRI study on the task of plan-
ning functional grasps of bimanual tools will be presented
and discussed [22].

II. METHODS

The modelled hemodynamic response function (HRF) is
typically fit for a series of trials from an fMRI experiment.
The example described herein will be restricted to a single
trial of a specific cognitive task, namely, planning functional
grasps, and the data used here are from a study by Przybylski
and Króliczak [16]. This single-trial data sample consists of
17 volumes of blood-oxygen-level-dependent (BOLD) fMRI
signal, i.e., the signals were measured at 17 time points,
evenly distributed over the span of 34 seconds (one volume
was acquired for 2 seconds). The BOLD contrast is a natu-
ral phenomenon, which allows estimating the difference in
blood-oxygenation level, based on the magnetic character-
istics of the oxygenated and deoxygenated red blood cells.
In other words, the assumption behind the fMRI is that the
local increase in demand for oxygenated blood is related to
the performance of a given cognitive task: at the moment in
which this increased demand was observed.

II. 1. Reference Signal Waveform
The signal used in the current example was acquired

in one of the experimental runs for one of the participants
taking part in the study. The motivation and complete re-
sults for this experiment are described in detail elsewhere
(see [16]). The expected signal time course was pre-modeled
with FMRIB Software Library (FSL1 [23], Oxford, UK), and
the modelled hemodynamic neural response was stored in
a standard “design.mat” FSL file. This file usually contains
a matrix of values of the modelled signal for all experimental
conditions (e.g., the reference signal waveform), and in the
case of the current single-condition example it is a single-
column matrix (i.e., a vector of 17 values): [−8.74, 1.53,
3.56, 4.91, 3.00, 7.70, −5.93, −1.22, −1.42, −1.37, −1.22,
−1.08, −9.90, −9.33, −9.04, −8.91, −8.85].

II. 2. General Linear Model (GLM)
In the considered case, a general linear model was used

to fit the observed signal to the modelled (theoretical) time
course of the brain response. In other words, first an assump-
tion is made about how the brain should respond to a given
task (a reference waveform), and then the observed signal
is fitted (compared) to the pre-modelled time course. Here,
for the purpose of fitting the model, a single voxel was se-
lected from the whole volume of 64×64×36 voxels (around
1.47 · 105 points in the stereotactic space). The signal time
course was extracted from this voxel and the values obtained
that way were used as a vector of a response variable in a re-

1 Source: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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gression model (red line in the top panel of Fig. 1) with a pre-
dictor variable being the designed (theoretical) time course
(blue line in the top panel of Fig. 1). The parameter estimate
calculated for particular conditions is the slope of the regres-
sion line, i.e., the beta weight of the regression, representing
the fit to the expected signal time course (see Eq. (1); and the
blue regression line in the bottom panel of Fig. 1). Usually, in
the case of fMRI data analysis there are multiple parameters
being fit, one per each experimental condition. Here only one
parameter, i.e., a single experimental condition, was used for
the sake of simplicity of the example. Such a single param-
eter fit is a special case of the more general linear model
which is described mathematically in Eq. (1):

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1 + εi , (1)

where:
• Yi is a response variable, i.e., the values of the ob-

served fMRI signal,
• Xi1, . . . , Xi,p−1 are explanatory variables, which in

this case are the expected brain responses to the ex-
perimental conditions,

• β0, β1, . . . , βp−1 are regression parameters to be fit,
• εi is an error of the model fit,
• p is a number of explanatory variables (conditions),
• i = 1, . . . , n is an index of the observation (number of

a brain signal volume).
Although the location of this best-fit voxel in the analyzed
fMRI data sample was known prior to the analysis described
in this article, as it was calculated beforehand with the FSL
software (similarly to the research conducted by Przybyl-
ski and Króliczak [16]), the signal from this particular voxel
was re-analyzed in order to present the idea of fitting the
modelled time course to the real fMRI signal. The loca-
tion of the analyzed voxel in the 3D space of the brain was:
x = 19, y = 43, and y = 25. The time course for this par-
ticular voxel for the 17 volumes of fMRI BOLD activity is
presented in Fig. 1, top graph, as the red line.

One of the most popular goodness-of-fit measures for
the general linear model is the coefficient of determination,
often denoted as R2 (R-squared). This measure is based
on the ratio of the sum of squares of residuals to the to-
tal sum of squares. The better the model predicts the ob-
served values, given some features (determinants), the higher
the coefficient is, up to the value of 1.0, which means
a very good fit. If the model is constant (its beta weights
are equal to 0.0), and it always perfectly predicts the val-
ues, then the R-squared is 0.0, i.e., the model does not
explain the variability in the observed data (see, e.g., the
Scikit-learn documentation2).

II. 3. Subtraction Contrasts
Calculating the model fit for all voxels in a series of

fMRI signal volumes is just the first stage of the complete

computational workflow. The subsequent step is to compare
different conditions to each other, which is performed with
one of the two statistical approaches, either univariate (see,
e.g., [16, 24]) or multivariate analysis (e.g., [25–27]). This
article will focus on the former, i.e., the univariate analysis,
which utilizes the method of a cognitive subtraction.

The cognitive subtraction procedure refers to comparing
different experimental conditions to each other, e.g., compar-
ing the signal related to a performance of a given cognitive
task vs. the resting state condition, i.e., lying idle in the scan-
ner. In terms of calculations to be performed, the subtraction
comes down to executing mathematically defined procedures
on the beta weights obtained for the modelled conditions,
hence the statistical term for the product of this procedure:
contrast of parameter estimates (COPEs).

However, in practice, such contrasts are not just a sim-
ple arithmetic subtraction of the parameters averaged across
experimental runs, but a more advanced statistical operation
has to be performed in order to compare the conditions in
a reliable manner. Most often, a t-test is performed to vali-
date a null hypothesis of no difference between two condi-
tions, as represented in the formula below (Eq. (2)):

t =
X1 −X2

sX1−X2

, (2)

where the denominator is

sX1−X2
=

√
s2p
n1

+
s2p
n2

, (3)

and the numerators in Eq. (3) (s2p) refer to a pooled variance

s2p =

∑
(X1 −X1)

2
+
∑

(X2 −X2)
2

n1 − n2 − 2
. (4)

Additionally, the suffix “1” indicates a signal acquired for
the first condition, and “2” stands for the data from the sec-
ond condition. The “n” character represents images (signal
volumes) collected for each of these conditions. For a de-
tailed description of the subtraction procedure see [13]
and [14]; equations presented herein are adapted from the
FSL documentation3.

II. 4. Repeated Measures Analysis
of Variance (rmANOVA)

A comparison between three or more conditions re-
quires a slightly different statistical approach. Namely, in-
stead of performing a simple contrast (comparing just
two conditions), a repeated-measures analysis of variance
(rmANOVA) is performed with the additional post-hoc tests
between the pairs of all considered conditions. This way,

2 Source: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression.score
3 Source: https://users.fmrib.ox.ac.uk/ stuart/thesis/chapter_6/section6_3.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression.score
https://users.fmrib.ox.ac.uk/~stuart/thesis/chapter_6/section6_3.html
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three or more experimental factors can be accounted for
in a single analysis. Consider the following example from
a slightly different domain: assessing treatment efficacy
(e.g., as a part of drug testing research). In such case,
rmANOVA conditions could be, e.g., signal values acquired:
1) before the treatment, 2) shortly after the treatment (e.g.,
a day or two), and 3) some longer time after the second mea-
surement was taken (e.g., weeks, or even months after the
treatment). As a matter of fact, this statistical procedure is
also often utilized in longitudinal studies.

Additionally, with statistical procedures such as a two-
way ANOVA, also the potential interaction effect between

conditions can be revealed. For instance, there can be a com-
bined effect of type of the treatment and patient group with
some therapies being effective, e.g., only for patients with-
out comorbidities. In such scenarios the following two con-
ditions can be considered with two levels per condition
each: the first condition 1) treatment type with levels “treat-
ment A”, and “treatment B”; and the second condition 2) pa-
tient group with levels “without comorbidities” and “with
comorbidities”. In the present study, this more advanced sta-
tistical approach based on the analysis of variance will be
explained in terms of fMRI analyses regarding planning bi-
manual grasps of tools vs. planning grasps of unimanual
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Fig. 1. Modeled and actual signal time courses and a general linear model fit for one voxel from a single trial of an experiment. In the top
panel, an overlay of signal time courses is presented with the modelled signal time course (blue line plot) scaled to the actual observed
fMRI signal values (red line). In the bottom panel, the modelled signal values (not scaled this time) were plotted on the abscissa (x-axis)
against the actual observed signal values (ordinate, y-axis) as red dots. The straight blue line represents the regression model. Notice the
linear trend for the data that was confirmed with the R2 statistic of 0.86. These results were obtained for a single voxel with the best fit

within the analyzed series of fMRI volumes
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tools; with conditions 1) object type – bimanual or uniman-
ual objects, and 2) the hand to be used to perform the grasp
– the right, or the left hand [22].

III. RESULTS

The estimated parameter of the model fit calculated for
a single trial of planning grasps of tools for the analyzed
voxel was 4.095 (i.e., the beta weight) and the constant in-
tercept of this model was 13 021.69. The coefficient of deter-
mination R2 for the calculated model was 0.86 (see Fig. 1).
In other words, the model fit for the data from the analyzed
voxel was quite good. The decent quality of the model fit
was not surprising, given the fact that this exact voxel was
revealed by a prior FSL analysis as the most crucial voxel
for this condition (see the Methods section). However, it still
could be the case that, despite being the best fit spatial lo-
cation in an entire brain, the coefficient of determination for
the model in this voxel would be, e.g., below 0.5. That would
mean that in the whole brain volume there was not a sin-
gle voxel with a satisfying fit for the analyzed trial. In other
words, signal variability in no single location in the brain
would have correlated with the analyzed experimental con-
dition (at least for this participant in this specific trial). Nev-
ertheless, it was not the case here, as the observed hemody-
namic response was predicted by the model relatively good,
as depicted graphically in Fig. 1.

If there were more conditions analyzed in this example,
e.g., 1) planning functional grasps and 2) planning grasps of
control objects, it would be possible to compare these two
conditions with a t-test, hence performing a kind of a cogni-
tive subtraction (see the description in the Methods section).
The result of such comparison would have revealed whether
or not there was a statistically significant difference between
these conditions, thus indicating brain regions with signif-
icantly different activity for these two conditions. In fact,
such comparison will be described here as exemplified by
a different experiment, regarding planning bimanual grasps
of tools [22].

An fMRI experiment on bimanual grasps of tools in-
volved the following two conditions: 1) the to-be-used hand,
i.e., the leading hand (right or left); and 2) manuality of the
object (bimanual or unimanual) [22]. The inputs to this anal-
ysis were contrasts of tool-related conditions with non-tool
reference objects: it was meant to account for the factor of
the functionality of the object. The main research question
in the study was whether the information related to the bi-
manual tools is processed within the praxis representation
network in a different manner, as compared to signal fluc-
tuations in this network for unimanual tools. Three separate
rmANOVAs were performed, one for each of the phases of
the interaction with tools: grasp planning, performing the
grasps, and using tools. The results for the main effect of
manuality in a form of a post-hoc test (a direct compari-

son) between bimanual-tool-related effects and unimanual-
tool parameters are presented in Fig. 2.

The results presented in panel A of Fig. 2 show that dur-
ing the phase of planning functional grasps the three acti-
vated clusters of voxels were located exclusively in the right
hemisphere, more specifically in the superior parietal lobule,
in somatosensory cortex, and in the motor cortices. Perform-
ing the functional grasps of bimanual tools, in addition to the
activity observed during planning, also involved processing
within the left hemisphere (sensorimotor cortex and supe-
rior parietal lobule), and in the dorsal parts of the occipito-
parietal cortices within the right hemisphere. There were also
some clusters of activity in the medial motor cortex bilater-
ally, and some processing also took place within the visual
cortex, although it was restricted almost exclusively to the
right hemisphere (see Fig. 2B). Bimanual tool use engaged
exclusively the left hemisphere, with activity located in the
somatosensory and early dorsal visual cortices (Fig. 2C).
An overlay of all three stages of the interaction with tools
is presented in Fig. 2D.

The more complex example of fMRI rmANOVA analy-
sis described above shows that the processing pipeline rep-
resenting the whole workflow can be quite complex, as not
only the signal time course models have to be fit for all brain
voxels, but also the resulting representations of experimen-
tal conditions have to be compared to each other using dif-
ferent statistical methods. Apart from the computational is-
sues with the analysis, the interpretation of such outcomes
requires knowledge of brain anatomy and the relation be-
tween brain networks and the functions they implement.

IV. DISCUSSION

Studying human cognition with the functional magnetic
resonance imaging is a computationally demanding task.
In order to successfully perform model fitting, one has to
process extensive amounts of data and that part is just the
beginning of fMRI data analysis, with subtraction contrasts,
adjustment for multiple comparisons, and group-level anal-
yses being the subsequent stages.

The computational challenge in fMRI research can be
explained in terms of the following example: a standard
fMRI image is a multi-dimensional array of a usual size
of approximately 64 × 64 × 36 voxels (i.e., spatial cubes,
2 mm3 each). The exact size of a single fMRI signal vol-
ume depends on the specific settings of the magnetic field
of view during the procedure, and scanner’s spatial resolu-
tion (its accuracy). An fMRI experimental run is a series
of approximately 150 of such signal volumes: i.e., images
(scans or frames), each of which is acquired over the time
period of 2 seconds (the time interval for the acquisition of
a single volume is referred to as a repetition time, or time-
to-repetition, TR). Therefore, it takes roughly 5 minutes to
perform a single experimental run, which, from the point of
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Fig. 2. A post-hoc comparison for the main effect of tool type (bimanual vs. unimanual) from an rmANOVA, with control objects (non-
tools) as reference. There are three phases of interaction with tools presented herein: planning functional grasps – a grasp preparation stage
(A), performing the grasps of the objects (B), and the tool-use phase (C). Panel D presents an overlay of the results from phases depicted
in panels (A), (B), and (C). The results are mapped to partially inflated (midthickness, lateral and medial views) brain surfaces, as well as
7 brain slices across the axial plane. Color maps and bars represent standardized (Z-scored) t statistics from the follow up (post-hoc) direct
comparisons between the bimanual and unimanual tool conditions, thresholded above the 3.1 Z value. Family-wise error rate (FWER)

was calculated for an alpha (α) level of 0.05, i.e., a correction for the number of clusters. The figure is adapted from [22]

view of the design of the experiment, is a series of trials, also
called an order of trials. Most probably, each participant will
undergo not just one but at least two such experimental runs,
because splitting the excessive number of trials into separate
runs is a better practice from the ethical as well as technical

point of view. Moreover, separating sets of trials into sep-
arate runs can not only provide more reliable results, but is
also more convenient for both the researcher, and for the par-
ticipant. If the experimental plan assumes performing a study
with as many as 200 participants with two runs per a partici-
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pant, then the number of values to be analyzed grows signif-
icantly. To sum up this example so far, by performing such
fMRI experiment we obtain the information representing the
particular measurements that were taken, and these data can
be conceptualized as a six-dimensional array with the fol-
lowing information stored in particular dimensions: 1) width
of a scan × 2) its length × 3) height × 4) number of scans
in a single run × 5) number of participants × 6) number of
experimental runs. Based on this example, we can estimate
that in such a study we would have to potentially store and
analyze 64 × 64 × 36 × 150 × 200 × 2 = 8 847 360 000
signal values (i.e., over 8.847 · 109 data points). In addi-
tion to that, there is also an 150 × 200 × 2 × 4 array con-
taining information about the modeled time course for each
person’s run from two sessions, for, e.g., 4 modeled ex-
perimental conditions (i.e., the number of scans/volumes ×
× number of participants × number of experimental runs ×
× number of conditions). In terms of computations to be per-
formed, the statistical procedure requires fitting as many as
64 × 64 × 36 × 200 × 2 = 58 982 400 (over 5.898 · 107)
4-parameter models with 150 values in each of these models
representing the discrete moments in the time during which
the data were acquired.

Because constructing such arrays for the purpose of per-
forming calculations is virtually impossible using a single
work station or a laptop, the common practice is to divide
the calculation into separate processing procedures, e.g., an-
alyze data for a single participant at a time, using dedicated
software, such as FSL [23], or SPM [28] packages. In the
subsequent step of the analysis, the results for particular par-
ticipants are averaged in order to reveal a group-level effect.

The only informatics improvement for the standardiza-
tion and parallelization of the fMRI analysis workflow are
the tools for describing, combining, and running particular
processing pipelines, e.g., nipype [29]. In such tools, differ-
ent stages of the analysis workflow can be represented as the
procedures with a convenient graphical visualization of the
whole analytical process. Therefore, it is not surprising that
most of the neuroscience PhD programs around the world
require the candidates to demonstrate a certain level of pro-
ficiency in programming languages, such as Python, and/or
statistical computing frameworks, e.g., MATLAB, or R.

What is desperately needed in the field of neuroscience is
strict, standardized protocols of data acquisition and analysis
that a user who is less familiar with programming methods
can comprehend and perform. Having such protocols imple-
mented in a form of a coherent system – a platform and/or an
analytical framework – can greatly facilitate the usage of the
already available, advanced tools for defining and running
the processing workflows [29, 30]. Interestingly, the tools
that are available now, in order to define even the simplest
automated pipeline, require the user to have basic knowledge
on both of the commonly utilized programming approaches:
object-oriented, as well as functional programming. Due to
that complexity and diversity of the required skills, the learn-

ing curve for the modern fMRI data analysis frameworks is
very steep. With an easy-to-use, unified neuroscientific sta-
tistical framework not only the results could be obtained eas-
ier and with less effort, but also the outcomes from different
laboratories could be promptly compared to each other, ad-
ditionally allowing for a replication and/or modification of
the analytical procedures that were originally applied to the
data acquired in a single laboratory. At the moment, due to
the plethora of software methods and statistical frameworks
used across the world, it is so extremally complex and time-
consuming to exactly replicate even a single fMRI study that
practically no one is making the effort to do so [31].

V. SUMMARY AND CONCLUSIONS

Analyzing fMRI data is a computationally demanding
task which requires utilizing a complex, domain-specific in-
formation processing workflow. Neuroscientific data-related
procedures can be standardized and unified by creating a sin-
gle, common statistical framework. While computational
methods, such as fitting a general linear model or hypoth-
esis testing, are a cornerstone of cognitive neuroscience,
the ever-increasing amount of the acquired data brings new
challenges in the field of informatics. With the availability
of high performance computing resources, increased mem-
ory and storage, utilizing novel computational approaches in
neuroscience is now more feasible than ever before. More-
over, in order to efficiently apply these quantitative meth-
ods to fMRI data, also a convenient user interface is needed
for specialists who are first and foremost experts in their
non-technical domains of knowledge, i.e.: neuropsychology,
medicine, or biology. By providing a link between the most
advanced informatics and mathematics techniques on the
one hand, and cognitive science, psychology, and medicine
on the other, the idea of an interdisciplinary approach to the
science as a holistic human activity can be successfully real-
ized.
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