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Combined Probabilistic Methods for Droplet Drying Simulations
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Abstract: The rapidly developing 3D printing and the related fabrication of ultra-thin layers in various industries have
resulted in the need for theoretical methods for describing large-area systems of growing nanostructures. The specificity of
these issues is the presence of multi-particle systems characterized by the coexistence of particles with a wide range of sizes
typical for ions, nanoparticles, and their agglomerates. A particular example would be an aqueous nano-colloidal suspension
drying on a substrate as a self-assembling deposit. It should be emphasized here that the development of deposit patterning
control techniques is one of the most important challenges for the thin film industry. In this paper we show that probabilistic
methods can be successfully used to model such systems. To this aim, the combined master equation and Monte Carlo
methods were used for computer simulation of a drying droplet in the case of a low concentration salt solution.The novelty
of this approach is to show the possibility of computer simulation for a microscopic system while simulating large-scale
processes affecting microscopic processes. The numerical results were additionally supported by experimental data.
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I. INTRODUCTION

For this journal we are interested in computer simula-
tion of the large-scale phenomena related to the drying of
a droplet leading to the formation of a deposit on a sub-
strate. It is known that such a deposit often takes the form
of the coffee-ring structure which is undesirable for many
industry applications. This phenomenon is well explained
by Deegan and coworkers [1] but there is still a struggle to
obtain deposit structures that are homogeneously distributed
over the substrate without the presence of a coffee-ring struc-
ture [2–4]. When the edge of a drying drop is pinned to the
substrate, the evaporation process leads to the appearance of
capillary flow of droplet components (e.g. solute and col-
loidal particles) from the droplet center to its edge, causing
the accumulation of particles at the droplet-substrate contact
line. In this case, computer modeling of the deposit pattern-
ing requires overcoming both the barrier of direct access to

the huge computer memory and CPU requirements. An ex-
ample of the application of the Monte Carlo method to sim-
ulate the droplet drying process can be found, among others,
in the following publication [5] which presents the basic pro-
files of a drying droplet. The computational complexity of
the problem is so great that the authors could only provide
the coarse-grained results on the appearance of the coffee
ring.

This study demonstrates the possibility of a hierarchical
description of this issue in two stages. In stage I, the vol-
ume of the droplet’s interior is divided into volumetric cells
and the displacement of the solution components takes place
through the probable flux flowing between adjacent volumet-
ric cells. This is the exact enumeration method originating
from the master equation approach. In stage II, the Monte
Carlo method is exploited to simulate the deposit structure.
To be specific, we choose a droplet of a low concentration
salt solution as an example. The results are additionally sup-
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ported by experimental data on imaging the drying droplet
and deposit patterning using optical microscopy and atomic
force microscopy (AFM).

II. MODEL

II. 1. Volumetric Simulation
In this work the physical system for a drying droplet is

represented by a droplet of 0.02 M NaCl salt solution on
a freshly cleaved mica surface. The mica surface is often
said as the basic substrate for the atomic force microscopy
(AFM) [6]. The atomically-flat surface of muscovite mica is
a silicate layer structure where an octahedral layer of AlO6 is
located between every two tetrahedral layers of SiO4. In this
structure, one in four Si4+ in the tetrahedral layers is ran-
domly replaced by Al3+ thus generating a negative charge
that is compensated by K+ cations. During cleavage of the
mica along the (001) crystal face, half of the potassium ions
remain on each of the separated mica surfaces preserving
charge neutrality. In the simulation program, the muscovite
mica structure is approximated by a coarse-grained rectan-
gular lattice with a unit cell with dimensions ax = 25 nm
and ay = 26.18 nm, which makes the diagonal inclination
in each cell equal to 60 degrees. This approximation of the
mica surface partially reflects some features of the ditrigonal
structure of the mica surface that was used in the experimen-
tal part concerning the drying saline droplet in Fig. 1 (see
also Fig. 3).

The assumptions of the drying droplet model are the fol-
lowing:

1. We assume that the droplet surface h = z(x, y) has
a spherical cap shape with a circular solid-liquid cross-
section with a radius R. The radius R does not change
as the droplet dries. The droplet contact angle θ and

droplet height h decrease during the evaporation pro-
cess according to the analytical equations for θ(t) and
h(t) [7, 8]. The detailed form of these equations is
given below. During the computer simulation they de-
termine the time-dependent boundary conditions for
the diffusing ions Na+ and Cl− because water will not
be directly included in the simulation. Moreover, the
diffusing ions sense an outward drift due to the capil-
lary flow caused by the water evaporation process and
an inward drift due to the change in the shape of the
droplet.

2. The droplet height h = h(r, t) at distance r from
its center is given analytically by the equation [8]

h(r, t) =
√
R2/ sin2(θ)− r2 − R/ tanh(θ), where

θ = θ(t) denotes the droplet contact angle at time t
and r2 = x2 + y2. According to the following pa-
per [8]: −dθ

dt = D(1 − H)csat(0.27θ
2 + 1.3)(1 +

+cos(θ))2/ρR2.
The parameters used in the simulation run are vapor
diffusivity D = 26.1 mm2/s, humidity H = 0.38,
vapor saturation csat = 2.32 × 10−8 g/mm3, water
density ρ = 1 g/cm3, and R = 0.08 mm.

3. The outward capillary flow velocity uoutward(r) at
distance r from the droplet center (Fig. 2) reads as the
following: uout = D∗/(θ

√
R(R− r)) where D∗ =

= 2
√
2D(1.0−H)csat/(πρ).

4. The inward flow (Fig. 2) was defined with the help of
the difference between the height at time t + ∆t and
time t as follows:
uinward = α(h(t+∆t)−h(t))/∆t where α = z/h(t)
and z is the z-component of the diffusing ion (Na+ or
Cl−).

5. The inside of the droplet is partitioned into cube-
shaped cells with a side length of 10 µm. In each cell
there is a given number concentration of ions Na+ and

Fig. 1. Optical microscope image of a drying droplet of 0.02 M saline placed on the surface of muscovite mica (a), a fragment of the
ring-like salt deposit representing the coffee ring structure
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Fig. 2. Conceptual diagram of the drying droplet model that shows: (a) salt ions under the spherical cap of the droplet which is their
diffusion limit, (b) the effect of decreasing the contact angle θ in the sequential time step and thus reducing the space for ion diffusion,
(c) a single ion with arrows representing the velocities related to its diffusion and capillary flow to the outside and inside of the droplet,
(d) an enlarged section of the space occupied by the droplet, where the area of nine cubes has been selected for modeling the deposit

patterning in this fragment

Cl−, which changes with time according to the calcu-
lated coefficients of the transition probability between
neighboring cells as in the following master equation:

C(t+ 1)ijk =

=
∑
lmn

C(t)lmnwlmn,ijk − C(t)ijk
∑
lmn

wijk,lmn ,

(1)
where (i,j,k) and (l,m,n) label the nearest neighbor vol-
umetric cells and wlmn,ijk represents the probability
transition rate from the cell (lmn) to the cell (ijk),
Cijk denotes concentration of ions in the cell (ijk).
The rates w have the meaning of the inverse time τ
(w ∼ 1/τ ) it takes to move a single ion between ad-
jacent cells. The values of τ are calculated with the
help of the diffusional velocity of ions and the cap-
illary flow velocities, uoutward and uinward. It is as-
sumed that the outward capillary flow characterized
by the drift velocity uoutward takes place only in the
cubes in the lowest layer. The inward flow induced by
the drift velocity uinward is sensed by ions in all cubes.
The ions diffuse in the six natural directions in a cubic
unit.

6. The part of the ion flux from the lowest cubic boxes di-
rected to the substrate with a certain probability sticks
to the substrate and the salt crystallines begin to grow.
The probability of their growth is carried out accord-
ing to the salt hopper growth model [9]. This type of
salt crystal growth is suggested by our experimental
section for a low concentration salt solution on a mica
substrate. We observed a strong trend for the crys-
tallines to grow dominantly along their edges analo-

gously to the hopper growth. In this case the supersat-
uration at the onset of crystallization in the solution is
defined as Sm = mt/m0, where mt and m0 are the
molal concentrations when the crystal precipitates at
equilibrium [9]. We have selected the crystalline size
L growth rate to be in accordance with the equation
dL/dt = K(Sm − 1), where K = 9.4 µm/s and
Sm = 1. It is worth adding that the number of nu-
cleation points is a simulation parameter.

A schematic model of a drying droplet is shown in Fig. 2.
Panel (a) presents the spherical cap of the droplet which is
a boundary for diffusing ions. Ion diffusion takes place be-
tween the cubes inside the droplet. Each cube has an edge
length of 10 µm. Panel (b) shows the effect of decreasing
the angle θ in the next time step, thus reducing the space for
ion diffusion. Thereby, the concentration of ions in the cubes
increases. A single ion is symbolically shown on panel (c),
where the arrows represent the ion velocities related to its
diffusion and capillary flow to the outside and inside of the
droplet. Panel (d) shows an enlarged section of the space oc-
cupied by the droplet, where the area of nine cubes has been
selected. The simulation of the salt crystallization will be
carried in this area. The lowermost cubes contact the sub-
strate which is represented by a rectangular mesh so that for
each cube there is an area of 400ax × 381ay , where ax and
ay represent the elementary cell of the substrate. In the case
of θ = 0.1111 and the radius R = 0.8 mm, the droplet cov-
ers 153 206 cubes including the 20 060 cubes in the bottom
layer in contact with the substrate. In the case of modeling
the structure of the deposit, after determining the flow of salt
ions towards the substrate, there is a need to simulate the
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Fig. 3. Examples of elongated salt structures are shown: an optical microscope image (a), and 3D projection of an AFM image correspond-
ing to the 15× 15 µm region with the hopper-like structure (b)

formation of a salt deposit on N = 3 057 144 000 cells
of a rectangular network representing the substrate. For this
reason, in the model, the increase in the deposit is analyzed
only on the part of the droplet corresponding to nine cubes
arranged next to each other (see panel (d)) covering the area
of 30 × 30 µm. In the remaining cubes the total concentra-
tions of the crystallized salt are saved without performing
a patterning process. In this way, it is possible to model the
deposit patterning only in the selected places. Evidently, this
is a large approximation because this cut-off procedure ex-
cludes the presence of deposit aggregates that could appear
from the outside areas. In this work, 9 contiguous areas were
selected for the presentation of the applied computer simu-
lation method. The number of them and their location on the
substrate can, however, be increased freely, allowing an in-
sight into the crystallization processes taking place in them.
This is a significant strength of the method because it shows
the possibility of computer simulation of a large-area phe-
nomenon while ensuring its impact on processes on a micro-
scopic scale in selected locations. The size of the simulation
box in these selected areas will depend only on the charac-
teristic wavelength of the considered physical phenomenon.

II. 2. Deposit Patterning Simulation
In the simulations the area selected for the modeling

of the deposit patterning relates to 9 adjacent faces of the
cubes contacting the substrate and thus it means a 3600 ×
×3429 mesh made of cells with sides ax, ay . This area over-
laps a fragment of the coffee ring structure of the deposit as it
is shown in Fig. 2. To optimize the access to the computer’s
memory, this area was divided into 9 square areas, with the
linear size of 10 µm, corresponding to the cube faces. Conse-
quently, the simulation of the deposit growth was carried out

in 9 areas representing a grid with 400 × 381 lattice sites.
The information about the event that the salt crystal grows
outside its area towards the adjacent one is a cause for updat-
ing the deposit on the adjacent lattice. The crystalline growth
outward the 9× 9 area is forbidden.

In the case of a low concentration salt solution, the pat-
tern formation in our model represents a two-dimensional
aggregation problem on the rectangular lattice. The effect of
surface tension for the growing deposit is included with the
help of the sticking probability that depends on the local cur-
vature κ of the deposit. We adopted the method of modeling
the pattern formation that was introduced by Vicsek [10].
Then the sticking probability is the following:

p(κ) = Aκ+B , (2)

where

κ = m/L2
2 − (L2 − 1)/(2L2)), (3)

and L denotes the range expressed in lattice sites that is used
for the 2D surface curvature calculation, m denotes the num-
ber of the lattice sites within this range which have been cov-
ered by the deposit. In Eq. (3), L2 = 2L. The Metropolis
Monte Carlo is used for the sticking events. To model the de-
posit formation initially some number of the nucleation sites
is selected at random. The new crystallines can overlap the
existing ones but the distance between their centers cannot
exceed a given value.

III. RESULTS AND DISCUSSION

The theoretical results of the large-area simulations of
the drying droplet problem were supported by the experi-
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Fig. 4. The ring-like structure of the droplet deposit after 120 s (a), and the net number concentration profiles of salt ions in cubes repre-
senting the section of the droplet along the x-direction at different times (b)

mental results for a drying droplet of 0.02 M NaCl salt solu-
tion. Fig. 1a shows the image under the optical microscope
for a droplet placed on the freshly cleaved muscovite mica.
In the next figure (Fig. 1b), a fragment of the droplet de-
posit is shown together with a fragment of the coffee-ring
structure. In this area there are evident characteristic lon-
gitudinal nanostructures which are typical for the salt so-
lutions of very low concentration. They range in thickness
from a few nanometers to several hundred. These structures
are also shown in Fig. 3. At the initial stage of the drying
process their growth is not volumetric. Instead, the salt crys-
tals mainly grow at their edges. This makes them very sim-
ilar to the hopper structures [9]. In the right panel in Fig. 3,
which shows the AFM image of a small fragment of the
salt nanowires, an inverse pyramid structure characteristic
for the hopper growth can be noticed. The thickness of the
nanocrystalline chains is about 200 nm.

To perform a computer simulation of the drying droplet
up, along with modeling of the deposit pattern, physical
phenomena should be taken into account on several scales
simultaneously, ranging from ion diffusion to macroscopic
capillary flows in the droplet. These flows determine the
macroscopic structure of the deposit. Presently, we have
shown that computational difficulties can be relatively easily
overcome by using combined probabilistic methods. In our
case it is the master equation method for modeling ionic
fluxes in the volume of the droplet and the Monte Carlo
method for deposit patterning which can be restricted to
a small fragment of the substrate. In the case of the small
area of the substrate, such as in this study, the computational
difficulties are reduced to the computing power of PC-level
computers. In Fig. 4a, the coffee-ring structure for a drying
droplet is shown in terms of the probability density repre-
sented by the number concentration of ions Na+ and Cl− per
cube volume (10 µm3). In Fig. 4b, the profile of the net con-
centration of both types of ions has been shown at different

times through the section of the drying droplet. It includes
both the solution ions and the ions in the salt deposit, where
the dashed line marks their initial distribution. In this study
the simulation applies only to the initial stage of the drying
droplet because the thin layer droplets of the low concen-
tration salt solutions can undergo rupture that can strongly
affect the deposit patterning. The issue is described in [11],
but this mechanism is not included in our model.

The results of the computer simulation of the deposit pat-
tern on the substrate are shown in Fig. 5 for the selected
30×30 µm area at the edge of the droplet. The figure demon-
strates a significant difference in the concentration and size
of the salt structures in the individual nine sub-areas indi-
cated by the dashed lines. These sub-areas correspond to the
sizes of the lower face of the cubes representing the interior
of the droplet, and the visible abrupt differences in the ver-
tical direction are related to the simulation of ion flows be-
tween the cubes. The size of the cubes determines the resolu-
tion of the ionic flux to the substrate. This is also the reason
for the more uniform concentration of the deposit in the hor-
izontal direction. The resolution of the flux transfer is a pa-
rameter of our model, so the linear size of the cubes can be
reduced. However, the figure correctly reproduces the struc-
ture of the deposit in the form of elongated nanostructures
characteristic of hopper growth. The lower three regions are
the outermost regions of the droplet and the size of these
structures is much larger than those deeper into the droplet.
Among others, they mimic well the fragment of the coffee
ring structure. The right panel shows the analogous results
for the smaller droplet with the radius R = 0.6 mm. The di-
vision of the selected area into separate nine sub-areas did
not introduce correlations once the deposit structures grow
through their edges. The reason is that sticking probability is
based on the local curvature of the deposit (Eq. (3)). In ad-
dition, even the clouds of the small salt structures are corre-
lated accordingly.
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Fig. 5. The salt nanostructures emerge after the 120 s of the computer simulation of the drying droplet. In the left panel, the fragment of
9× 9 square-like areas which are separated by the dashed lines is shown where the bottom squares represent the droplet edge. In this case
R = 0.8 mm. In the right panel, the enlarged fragment of the deposit is shown for a droplet with R = 0.6 mm. Other parameters: A = 3,

B = 0.2, L = 11 in p(κ) (Eq. (2))

IV. CONCLUSIONS

Our results show that we were able to perform large-
area simulations of the complex system like droplet de-
posit patterning. The combined probabilistic method based
on the exact enumeration through the master equation ap-
proach and the Metropolis Monte Carlo method appears to
be a promising approach for modeling complex systems.
A specific example of the saline droplet can be easily ex-
tended to nanocolloidal droplets. The latter case is important
to support experiments in which thin layers are built.
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