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A Toy Model for the Diffusion-Limited Aggregation
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Abstract: We consider the deterministic Vicsek fractal with the aim to understand the multifractal properties of the
Diffusion-Limited Aggregation.
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I. INTRODUCTION

In the past there was great interest in the study of irre-
versible kinetic processes leading to the formation of frac-
tal objects. A simple stochastic model for the formation
of clusters of particles in two-dimensional space was pro-
posed by Witten and Sander [1]. In their model called
Diffusion-Limited Aggregation (DLA), a Brownian parti-
cle is launched from a random position far away from the
“seed” (usually located in the center of the lattice). In the
strict formulation the walking particles are starting from in-
finity. If the particle reaches another particle (“seed”) then
it sticks and the occupied perimeter site is incorporated into
the cluster. Then, a new particle initiates its random walk.
If the particle contacts the cluster (now built of two parti-
cles) it stops and the cluster grows. This process is repeated
many times (103–106) and leads to ramified structures pos-
sessing remarkable scaling properties, see Fig. 1. The growth
appears mainly at outer parts of the cluster: the “fjords” and
“gulfs” are hardly accessible to random walkers as the prob-
abilities to “catch” particles are very small in these regions.
The present world record for on lattice DLA seems to be [2]
with the cluster made of 145 199 976 particles. The fractality
manifests itself for example in behavior of the number N(R)
of particles contained inside a circle of radius R:

N(R) ∼ RDf , (1)

where Df ≈ 1.6÷ 1.7 is the fractal dimension.

Fig. 1. The DLA cluster built from 480 000 particles on the
square lattice

To our knowledge a satisfactory theory of the general
growth processes, and of DLA in particular, is still missing.
In our opinion the full theory should provide the formula for
the behavior of the number of particles N(R) averaged over
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all possible realizations of DLA clusters as a function of the
radius R:

⟨N(R)⟩ ∼ RDf , (2)

with the value of Df close to computer estimations D ≈
≈ 1.6 ÷ 1.7. There were no analytical attempts to calcu-
late the moments of the growth site probability distribution
(GSPD) for DLA except the papers by Lee and et al [2],
but these papers tackled the rather different model. In this
paper we are going to present the results of the numerical
calculations of moments of hitting probabilities GSPD for
a Vicsek fractal, which we treat as a zeroth order approxi-
mation to the DLA clusters. The idea is to develop a kind of
the perturbation theory by analogy with quantum mechan-
ics, where information about unsolvable Hamiltonians which
can be written as the sum of solvable H0 and perturbing parts
HI , H = H0 +HI , is obtained via the perturbation theory.

In Sec. 2 we present the main properties of the GSPD for
DLA which we attempt to model by the GSPD of determin-
istic Vicsek fractal. In Sec. 3 we present the main facts about
Vicsek fractal. In Sec. 4 the methods of obtaining GSPD are
discussed. In Sec. 5 the multifractal analysis of GSPD for
Vicsek snowflake is presented. In Sec. 6 the reader will find
the discussion and summary.

II. PROPERTIES
OF THE GROWTH PROBABILITIES FOR DLA

In 1985, Scher and Turkevich [3] recognized in the
DLA the role played by the set of the growth probabilities
{pi}i=1...P , where pi is the probability for perimeter site i to
be the next to grow and P denotes a total number of perime-
ter sites. Therefore, this paper has focused on GSPD as an
effective way to characterize these fractal growth processes.
The customary way of studying the properties of the set of
probabilities is by means of the moments averaged over dif-
ferent realizations of the growth process:

⟨Zq(P )⟩ = 1

♯clusters

♯clusters∑
n=1

Pn∑
i=1

(p
(n)
i )

q
, (3)

where q is a real number q ∈ R and Pn is the number of
perimeter sites in the nth cluster and its averaged value ⟨P ⟩
is linked to linear size (radius of gyration) R by the scaling
⟨P ⟩ ∼ RDf [4] of the DLA cluster.

In early investigations performed on small clusters [5]
a powerlike dependence of the moments on R was found:

⟨Zq(R)⟩ ∼ R−τ(q). (4)

The fact that the function τ(q) is not linear is called mul-
tifractality and the function f(α) obtained by means of the
Legendre transform of τ(q) with respect to the variable q,

α(q) =
dτ

dq
, f(α) = qα(q)− τ(q) , (5)

is called the multifractal spectrum [5, 6]. For linear τ(q) the
function f(α) degenerates to just one point.

Simulations of larger clusters [7–9] have revealed that
in fact for negative q′s there is a breakdown of scaling and
moments display the following behavior:

⟨Zq(P )⟩ ∼
{
e−Bq(lnP )2.15 q < 0,
P−τ(q) q > 0.

(6)

This behavior is intimately connected with the following
behavior of averaged over different realizations of the DLA
process minimal growth probability pmin and maximal pmax

in the set {pi}i=1...P :

⟨pmax⟩ ∼ P−b , (7)

⟨pmin⟩ ∼ e−c(lnP )2.15 . (8)

The last property of GSPD that we would like to mention
consists in a very broad shape of the histogram of ln pi, see
e.g. Fig. 2 in [9].

The set of probabilities possessing the properties listed
above is very unique and it is not so easy to present a dif-
ferent than DLA mechanism leading to the set {pi}i=1...P

reproducing relations (6).

III. DETERMINISTIC VICSEK SNOWFLAKE

In 1983, T. Vicsek [10] introduced the deterministic frac-
tal. Surprisingly, this abstract construct has found practi-
cal applications as compact antennas in cellular phones, see
[11, 12].

The construction of the deterministic Vicsek snowflake
(DVS) is given by the recursive procedure. At the starting
stage (n = 0) we simply have a single site. Next (n = 1),
this site is reproduced four times at the “edges” of the orig-
inal “seed” and a symmetric cross built of five particles is
obtained. These procedure is repeated: the configuration at
the nth stage is obtained by adding to the four corners of the
(n − 1)th stage configuration four copies of the cluster cor-
responding to the (n − 1)th stage of the growth, see Fig. 2,
where a snowflake corresponding to n = 5 is given. This
cluster is a possible, but very improbable, outcome of the
usual DLA process and it should be compared with the DLA
cluster shown on the right of Fig. 2 consisting of the same
number (625) of particles.

For deterministic Vicsek snowflake the sizes R and the
number of particles N(R) increases with the stage n of the
recursion process as R = 3n and N(R) = 5n respectively.
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Fig. 2. Deterministic Vicsek snowflake corresponding to the 4th stage of growth consisting of 625 particles with linear size equal to 243
lattice spacings. For comparison, on the right the usual cluster built of 625 particles is presented. The “seed” is marked in red – i.e. the first

particle placed in the center of the lattice

From these two relations it follows that the fractal dimen-
sion of the DVS is given by Df = ln 5/ ln 3 = 1.465... It is
much smaller than the fractal dimension of the DLA clus-
ters, which equals ∼ 1.6 ÷ 1.7, see Eq. (1), but it became
known that the very large (N ∼ 106) on-lattice DLA clus-
ters possess smaller fractal dimension – see [13]. We would
like to point out that the ratio of the number of active (i.e.
with pi ̸= 0) perimeter sites Pactive to the number of all
perimeter sites P is almost the same as for DLA [4] and we
believe this ratio is responsible for main properties of the
multifractal spectrum for DLA, because this ratio is smaller
– more lakes or deep fjords are present with extremely small
pi and the scaling of negative moments breaks down. There
are “dead” sites which cannot be reached by the random
walker because they are screened in “fjords” and hence the
probability to reach them is zero. Indeed, the number of all
perimeter sites P for DVS is equal to P = 6 × 5n−1 + 2
and the number of active perimeter sites (i.e. not “dead”) is
Pactive = 5n−2 × 18 + 2, which leads to the conclusion
that Pactive = 0.6 × P – for DLA this ratio saturates at
N ∼ 500 and remains constant up to N = 105 for large
clusters at 0.635 [4]. Hence the number of “dead” sites is
Pdead = P − Pactive = 12× 5n−2. In the Fig. 3 we present
for the DVS with R = 81 and N = 625 the “dead” sites
on the perimeter – the walker cannot reach these sites, and
it will be stopped at earlier sites. In the next Section we are
going to present methods for obtaining GSPD which we will
apply in Sec. 4 to the perimeter sites of the Vicsek fractal.

IV. THE GROWTH PROBABILITIES
OF DLA CLUSTERS

To calculate growth probabilities we will use a method
based on the Spitzer theorem [14]. In the past the method
based on the Monte Carlo simulations was used as well as the
so called “DBM” prescription [11], but it is known now that
these methods give rather inaccurate values of {pi}, espe-
cially deeply inside the fjords (small pi); for a discussion on
this point see [8, 15]. We shall use the Spitzer formula [14]
expressing the hitting probabilities of arbitrary finite set for
the arbitrary aperiodic recurrent random walk in two dimen-
sions. Because in the usual DLA the particles perform the
symmetric random walk in a two-dimensional lattice we will
describe here the Spitzer recipe for calculating the hitting
probabilities of a simple random walk by points belonging
to a finite set B containing at least two sites. For the simple
random walk the transition probability P (x, y) is of the form

P (x, y) =

{
1
4 if x and y are nearest-neighbor sites,
0 in other cases.

(9)
As it is well known, this random walk is symmetric, ape-

riodic and recurrent (let us remind that in more than two di-
mensions the symmetric random walk is not recurrent, i.e.
the probability to hit the given fixed point by a walker is
less than 1). Let Pn(x, y) denote the probability that a parti-
cle executing a random walk and starting at the point x will
reach the point y after n steps:



154 M. Wolf

Fig. 3. The “dead” sites on the perimeter of the Vicsek snowflake for n = 4, i.e. R = 81 = 34 and N = 625 = 54

Pn(x, y)=
∑

xi∈Z2,i=1,...,n−1

P (x, x1)P (x1, x2). . .P (xn−1, y).

Let Gn(x, y) denote the expected number of visits of the
random walk starting at x to the point y within n steps:

Gn(x, y) =

n∑
k=1

Pk(x, y).

The crucial quantity in the Spitzer formula is the potential
kernel defined as

An(x, y) = Gn(0, 0)−Gn(x, y). (10)

Let A(x, y) denote the limit

A(x, y) = lim
n→∞

An(x, y). (11)

It can be proved that the operator A(x, y) is symmetric
and, if restricted to any finite subset B of Z2, invertible; let
KB(x, y) denote this inverse matrix:∑

t∈B

A(x, t)Kb(t, y) = δ(x, y) for x, y ∈ B. (12)

Next, let us introduce the notation

KB(x) =
∑
t∈B

KB(x, t), (13)

KB =
∑
t∈B

KB(t). (14)

Let HB(x, y) denote the probability of first hitting the set B
at the point y when starting point x ̸∈ B. If the set B ∈ Z2

consists of at least two points then the following formula
holds

HB(x, y) =
KB(y)

KB
+
∑
t∈B

A(x, t)
(
KB − KB(t)KB(y)

KB

)
.

(15)
In the DLA it is assumed that the particle starts from infinity:
|x| → ∞. For such a case it can be shown that the formula
(15) reduces to a simpler expression [14, Theorem 14.1]:

HB(∞, y) ≡ pB(y) =
KB(y)

KB
. (16)

This function pB(y) provides the so called harmonic mea-
sure of the set B :

∑
y pB(y) = 1. Now the prescription how

to calculate the potential kernel (15) efficiently is needed.
First of all, due to the translational symmetry of the simple
random walk, we have

A(x, y) = a(x− y), (17)

where the function a(x) is given by the following integral:
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a(x) =
1

(2π)2

∫ π

−π

∫ π

−π

1− cos(mθ1 + nθ2)

1− 1
2 (cos θ1 + cos θ2)

dθ1dθ2.

(18)
Here the notation x = (m,n) was introduced. The symmetry
properties of the above integral show that

a(m,n) = a(−m,−n) = a(m,−n) = a(−m,n) =

= a(−n,m) = a(n,−m) = a(n,m) = a(−n,−m).
(19)

The integral (18) can be calculated exactly only for points
lying on the “diagonal” x = (n, n); it can be shown that [12,
p.149]

a(n, n) =
4

π

n∑
k=1

1

(2k − 1)
, a(0, 0) = 0. (20)

Because the double integral (18) cannot be calculated in the
closed form for the points outside the diagonal, the follow-
ing method of the determination of a(x) for arbitrary x is
used. From the definition (11) the recurrence relation can be
shown to hold:

4a(m,n) =

= a(n−1,m) + a(n+1,m) + a(n,m−1) + a(n,m+1).
(21)

By proper use of (13) and (15) the values (14) suffice to cal-
culate the values of a(x) for arbitrary x. Suppose the values
of a(k,m) for 0 ≤ m ≤ k ≤ n are known. Then, one
can get a(n + 1, n) since a(n, n) is the average of a(n +
+1, n), a(n−1, n), a(n, n+1) and a(n, n−1) = a(n, n+1).
Next, a(n + 1, n + 1) is found, the site (n + 1, n + 1) be-
ing the only neighbor of (n, n + 1) where the value of a(x)
is unknown. In this way the values of a(x) in the (n + 1)th

“column” can be determined, and then with the help of (19)
the values of a(x) for the remaining edges of the square can
be obtained.

For large x = (m,n) it can be shown that

a(x) =
1

π
{2γ + ln[8(m2 + n2)]}, (22)

where the Euler constant is defined by the following limit:

γ= lim
n→∞

(
n∑

k=1

1

k
− log(n)

)
=0.577215664902 . . . (23)

The above method can be applied only to the clusters
of the moderate size of about a few hundreds of particles –
for really large systems there are problems with inversion
of the matrices and storing them in the computer memory.
For such big clusters we have used the method based on the
solution of the discrete Laplace equation. The probability pi
that a particle occupies a lattice site i = (m,n) is obtained
from the field ϕ satisfying the discrete Laplace equation [16]:

∇2ϕ(m,n) = 0. (24)

Tab. 1. Comparison of probabilities obtained for DVS with 752
sites on the perimeter by two methods: Spitzer theorem and Laplace
equation. Only a part of the data is presented. In the first columns
coordinates of the sites are given (center is in (0, 0)) and in next

two columns values of pi. The “dead” sites have pi = 0

(x,y) Laplace eq. Spitzer th.

0, 41 2.35737E−2 0.235839360E−1

1, 40 1.05531E−2 0.105580294E−1

1, 42 1.05532E−2 0.105580294E−1

2, 39 8.72431E−3 0.872795544E−2

2, 43 8.72420E−3 0.872795544E−2

3, 38 7.87495E−3 0.787778836E−2

3, 40 6.16402E−8 0.000000000E+0

3, 42 0.00000E+0 0.000000000E+0

3, 44 7.87510E−3 0.787778836E−2

4, 37 7.57388E−3 0.757605406E−2

4, 39 0.00000E+0 0.000000000E+0

4, 40 6.71308E−8 0.000000000E+0

4, 42 0.00000E+0 0.000000000E+0

4, 43 0.00000E+0 0.000000000E+0

4, 45 7.57419E−3 0.757605406E−2

5, 36 1.02709E−2 0.102727763E−1

5, 46 1.02710E−2 0.102727763E−1

6, 37 2.03638E−3 0.203615884E−2

6, 39 0.00000E+0 0.000000000E+0

6, 40 8.53695E−8 0.000000000E+0

6, 42 1.32880E−7 0.000000000E+0

6, 43 5.42305E−8 0.000000000E+0

6, 45 2.03600E−3 0.203615884E−2

7, 38 8.58725E−4 0.858808258E−3

7, 40 1.70730E−7 0.000000000E+0

7, 42 0.00000E+0 0.000000000E+0

7, 44 8.58578E−4 0.858808258E−3

8, 39 3.53153E−4 0.353500276E−3

8, 43 3.53391E−4 0.353500276E−3

9, 32 9.41480E−3 0.941471286E−2

9, 40 9.56218E−5 0.957810423E−4

9, 42 9.58805E−5 0.957810423E−4

9, 50 9.41487E−3 0.941471286E−2

10, 31 6.35143E−3 0.635073634E−2

10, 33 1.99014E−3 0.199016921E−2

10, 40 8.16383E−5 0.817169480E−4

10, 42 8.17177E−5 0.817169480E−4

10, 49 1.99013E−3 0.199016921E−2

10, 51 6.35161E−3 0.635073634E−2

11, 30 6.10324E−3 0.610189526E−2

11, 34 8.50681E−4 0.850918822E−3
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The boundary conditions are ϕ = 0 on the cluster and
its perimeter and ϕ = 1 far away from the cluster; such
a choice is called the DLA boundary conditions. The prob-
ability p(m,n) that a particle will hit the site (m,n) is given
by the formula

p(m,n) =
1

4
(ϕm−1,n+ϕm+1,n+ϕm,n+1+ϕm,n−1). (25)

We have checked for the Vicsek fractals up to N = 625
that both methods give exactly the same values for pi, see
Tab. 1, and GSPD for N = 3125 and N = 15 625 (for this
cluster the perimeter has 56 252 sites and the size of matrix
KB(x, y) is 56 252× 56 252 and it would occupy many gi-
gabytes of RAM, not to mention the problem of numerical
stability of the computer program) was obtained only via the
Laplace equation. We solved this equation numerically using
the over-relaxation method, see e.g. [17, 18]. The iterations
were performed until two consecutive iterations of the field
differed by less than 10−12 on the whole lattice.

Fig. 4. The absolute values of the differences between probabilities
obtained by two methods plotted as the function of the number of

the perimeter site: there are 752 such sites

In the Fig. 4 the differences between probabilities ob-
tained by the Spitzer theorem and from the Laplace equation
are shown.

V. MULTIFRACTALITY OF THE GSPD
FOR VICSEK FRACTAL

Because DLA is very hard to tackle analytically, it is
worth having a simpler “toy” model solution which can pro-
vide insights into the full problem. Our idea is to try to solve

some fractal which can be regarded as the “zeroth” approx-
imation to the real DLA clusters. Next, this solution can be
perturbed in some way. It resembles quantum mechanics,
where the hydrogen atom or the harmonic oscillator can be
solved analytically and these solutions are perturbed to ob-
tain more realistic models.

We have calculated GSPD for a series of DVS up to
n = 7, i.e. for N = 5, 25, ..., 78 125, which corresponds
to P = 8, 32, ..., 93 752 and linear sizes ranging from 3 to
2187. For n = 1, ..., 4 we have calculated pi both via the
Spitzer Theorem and Laplace equation. It allowed for check-
ing that the DLA boundary conditions perfectly reproduces
numbers obtained via Spitzer theorem. For n = 5, 6 and 7
we were able to use only the Laplace equation method.

For n = 7 we have calculated GSPD on the lattice
2501 × 2501 in double precision and on the lattice 3501 ×
×3501 in single precision to compare the differences in pi
and to look for possible instabilities. Obtained results were
the same.

Fig. 5. The plot of and ln(Zq(P )) vs ln(P ) in for q = −4,−2,
−1, 3, 5 to test scaling law. Because the points are lying on the per-
fect straight line, there is no need for generating GSPD for larger

Vicsek snowflakes

In Fig. 5 the plots of lnZq(P ) vs lnP are presented and
we see that DVS provides a model with perfect scaling law.
Also the quantities pmin and pmax displays a strict power law
behavior. It means that the multifractal formalism is applica-
ble here in full extent and the function τ(q) is well defined.
We calculated this function τ(q) from fitting to ln(Zq(P )
vs ln(P ) straight line via the least square method. The plot
of τ(q) is presented in Fig. 6. As it is seen, there are two
regimes: for q < 0 and q > 0 where τ(q) is strictly linear,
hence there is no multifractality present for DVS.
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Fig. 6. Dependence of τ(q) on q. There is a phase transition
at q = 0

VI. CONCLUSIONS

We have shown that the exact moments of the growth
probabilities for a Vicsek fractal display a strict power scal-
ing. In contrast with the moments averaged over usual DLA
clusters, and despite the fact that this DVS has a DLA-
aggregate like structure, it does not manifest the multifrac-
tal behavior. It suggests that the mechanism leading to the
formation of the DLA clusters is generic and very compli-
cated, and cannot be substituted by a different prescription.
We tried to somehow “perturb” probabilities obtained for
DVS but we were not able to obtain nonlinear τ(q). We are
going to continue search for the proper “deformation” of the
set pi for DVS that will display full multifractal spectrum.
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