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Abstract: In this paper, we demonstrate a new way of performing Monte Carlo (MC) simulations in a mixed phase region
that is difficult to study, where with certain probabilities there are different ordering ways. That results in a large oscillation
of the values of the computed thermodynamic quantities, which makes their interpretation very problematic. Our results
are presented on the example of the 3D Askin-Teller (AT) model, where within a certain range of parameters with equal
probabilities there are two different, but equivalent, ways of ordering two of the three order parameters showing independent
behavior. The use of our new approach in an MC computer experiment allowed us to use Binder cumulant as well as Challa-
and the Lee-Kosterlitz-like cumulants. This made it possible to locate phase transitions precisely enough to be able to use
the energy distribution histogram method. According to the most effective strategy in the critical region we use our recently
proposed cluster MC algorithm and the Metropolis algorithm beyond it, which are suitable for both the first-order and the
continuous phase transitions in the 3D AT model. The new approach was demonstrated by determining smooth curves of
magnetization and internal energy, and as a consequence by determining the location and character of the phase transition
on the line between the mixed phase region and the paramagnetic phase.
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Teller model

I. INTRODUCTION

For several decades, the Ashkin-Teller (AT) model [1]
has been one of the important points of reference in statis-
tical physics, as it is a non-trivial generalization of the in-
tensively used Ising model. After Fan [2] we express the AT
model in terms of two standard Ising models put on the same
lattice with spins s; and o; at each lattice site ¢. Thus, we
take into account only two spin interactions of a constant
magnitude .J, between the nearest neighbors. These two in-
dependent Ising models are coupled here by the four-spin
interaction of a constant magnitude Jy4, also only between
couples of nearest neighboring spins. This leads to the effec-
tive Hamiltonian /1

H

—m = Z{KQ(SLS] + O'Z‘O'j) + K4SZ‘O'iSjUj}. (1)

[é,4]
where K,, = —J,,/kpT, with n = 2 or 4, [i, j| denotes the
summation over the nearest neighboring lattice sites. More-
over, kp is the Boltzmann constant, and 7T is the tempera-
ture of the system. We consider here the symmetric 3D AT
model, i.e., the one with the same interactions between s and
o spins, distributed in the cubic lattice.

Every year a dozen of works are devoted to it (see, e.g.,
the recent papers [3—7] and the ones cited therein), and it
still finds new interesting applications, like recently for the
modeling of the crystalline order in VO, [8], machine learn-
ing [9], the gapless Coulomb state [10], nanodomain patterns
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in ultratetragonal PbTiO3 [11], magnetic properties of nan-
otubes [12], and the elastic response of the DNA molecule
to external force and torque [13]. This model is also very
important from a theoretical point of view as there are some
mappings between the AT model and other physical mod-
els [14].

The AT model is so attractive in terms of cognition
and application as it is characterized by the K (Ky) rich
and complex phase diagram because not only two order pa-
rameters (s) and (o) induce ordering, but also the prod-
uct (so) exhibits independent ordering, where the symbol
(...) denotes the thermal average. The research done for this
model and its applications can be found in many papers, e.g.,

[15-23].

A fragment of the phase diagram to which the results of
our work relate is shown in Fig. 1. The first systematic study
of the phase diagram of the 3D AT model on a cubic lat-
tice was done by Ditzian et al. [24]. They exploited short se-
ries expansion and Monte Carlo (MC) simulations with very
small samples, but they sketched the approximate phase dia-
gram which is an important point of reference. For this rea-
son, their results are ambiguous, mainly in the mixed phase
region marked as “(o)” in Fig. 1. In the “(o)” region, either
(s) or (o) is ferromagnetically ordered but the other is not
while (so) = 0. Although few papers that relate to the “(c)”
region have been published [20, 25, 26], their results are pre-
liminary and this region still constitutes a real challenge.

In the phase diagram in Fig. 1 there are also the Baxter
and paramagnetic (marked as “para”) phases for which all
order parameters, (s), (o), and (so), are ferromagnetically
ordered and are zero, respectively. For the phase marked as
“(so)ar” (s) = (o) = 0 and only the parameter (so) is
antiferromagnetically ordered. The first-order phase transi-
tions are denoted by the dotted curves, whereas the continu-
ous ones are denoted by the solid curves. The labeled point
positions are marked by + and A, H, H’, K, K’ are the tri-
critical points. Arnold and Zhang [23] using MC simulations
obtained the first more precise results along the line AP. Ising
phase transitions occur along the continuous curve ending at
the tricritical point K [21, 22, 27].

The 2D AT model shows the interesting line of continu-
ously varying phase transitions at iy < K> first shown in
the paper [28] and MC simulation results suggest the possi-
bility of occurrence of nonuniversal behavior also in the 3D
AT model [18, 20, 22, 24-26] but our recent results indicate
only a wide crossover along the AH line and the rare coex-
istence of continuous and first-order phase transitions along
the HH’ line [18] shown in Fig. 1. It is noteworthy that the
character of continuous phase transitions along the HK’ line
is still an open question.

The aim of our paper is to present a new method of
performing an MC computer experiment to study the order
and phase transitions between the mixed phase region “(c)”
and the “para” phase on the example of the standard 3D AT
model shown in Fig. 1. The “(c)” phase occurs only in the

symmetric AT model in 3D. Due to the difficulty of obtain-
ing unambiguous results and their interpretation, the “(c)”
region is often omitted, as it is the most complex and the
least recognized region of the 3D AT model phase diagram.
To solve this problem, we have developed an appropriate
strategy, precise tools such as three types of cumulants, and
the energy distribution histogram, which enable a detailed
analysis of this region. We have recently used these tools
with success to analyze the first-order of phase transitions to
the right of point A shown in Fig. 1 [15]. Due to the recently
announced presence of metastable and unstable states [4],
we use our cluster algorithm of the Wolff type [29] in the
critical region and the Metropolis one beyond.

To illustrate the use of our method, we precisely deter-
mined the location of the phase transition and we determined
its character for the point on the HK’ line between the mixed
phase region “(o)” and the paramagnetic phase shown in
Fig. 1. These problems are important, topical and have not
yet been solved in the bibliography of the subject.
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Fig. 1. A fragment of the phase diagram of the 3D AT model on
a cubic lattice to which the results of our paper relate. The dotted
curves denote the first order phase transitions, the solid ones stand
for continuous transitions and the dotted-broken one indicates tran-
sitions of both types for different order parameters. In the phase
labeled “Baxter” the system is ferromagnetically ordered with all
order parameters (s), (o) and (so) nonzero, whereas in the phase
labeled “para” they all are zero. In the phase “(so)ap” there is
(s) = (o) = 0 and only the (so) is antiferromagnetically ordered.
For the phase “(o)” called the mixed phase region (so) = 0 and
either (s) or (o) is ferromagnetically ordered but the other is not.
The positions of labeled points inside the phase diagram are marked
by + and A, H, H’, K, K’ are the tricritical points

II. THE APPLIED METHOD

To study the subject mixed phase region, we exploit
the MC computer experiment with importance sampling of
states and we consider the finite-size cubic samples of the
lattice symmetric AT model, the behavior of which is fully
determined by the Hamiltonian (1). These samples of size
L? with periodic boundary conditions are sufficiently large
to be able to compute the thermodynamic limit of our re-
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sults. We perform our computer experiments to predict the
equilibrium behavior of the 3D AT model according to the
statistical mechanics methodology.

The detailed description of the MC computer experiment
constructed by us for the 3D AT model based on the anal-
ysis of the dependencies of thermal averages of such ther-
modynamic variables as magnetization or internal energy,
and three different cumulants on the coupling constant, and
on the dependencies of the internal energy distribution his-
togram on energy can be found in our recent paper [15].
In this Section, apart from the computational aspects, we
present only its key elements and we will focus primarily
on explaining how to conduct it in the mixed phase region
“(o)”.

The specificity of such computer experiments of phase
transitions in spin lattice systems with Ising’s degrees of
freedom is the necessity to execute hundreds, often even
thousands of runs of programs, with the execution time rang-
ing from several hours to many weeks for the systems with
the largest size L3 limited by the processing capabilities
of the high-performance computers used [18, 22]. First, we
bring our system to a state of thermodynamic equilibrium us-
ing the appropriate number of MC steps that we analyzed in
our paper [29]. Moreover, in our MC computer experiments,
in contrast to simple MC simulations, we not only compute
thermodynamic quantities, but also carefully determine their
error bars. For this purpose, one program run consists of the
computation of 6 to 24 partial averages, each independently
calculated from approximately 107 MC steps, but only ev-
ery kth step contributes to the thermodynamic calculations
(6 < k£ < 10), which is enough to avoid correlations between
sampled configurations of our system using the Metropolis
algorithm [29]. The problem of these correlations is radi-
cally smaller in the case of the cluster algorithm [30], which
is also the case in our version of this algorithm [29].

Obviously, we get a true picture of the phase transition
only in the thermodynamic limit. To obtain reliable extrap-
olations of our results to the thermodynamic limit, we per-
form computations in systems with the largest possible size
L, which take many weeks at sequential processing. In or-
der to get the results in a reasonable time using the MPI li-
brary, we have parallelized the processing in our computer
experiments obtaining almost perfect speedup on symmet-
ric multicomputers [31]. This is because communication be-
tween concurrently executing processes occurs only a few
times: when broadcasting the original data by the master
process, and when sending partial averages from slave pro-
cesses to the master process. In the bibliography, there are
other methods of parallelization of processing in cluster al-
gorithms for models with degrees of freedom of the Ising
type [32, 33], which rely on concurrent computations for
newly added spins in a growing cluster performed on the
GPU. As aresult, the computing speed of the GPU for the 2D
Ising model in the critical region is faster than the comput-
ing speed of the current processor core. However, conduct-

ing parallel calculations for newly added spins will not be
optimal anymore [34], contrary to the parallelization of cal-
culations of individual partial averages [31].

The presence of metastable and unstable states in the
3D AT model was recently signalized using the mean field
method [4]. It is well known that the mean field theory is
a solid tool, especially suitable for the first view of the prob-
lem, and it does not provide quantitative consistence with
the precise results. Nevertheless, it gives a good qualitative
insight into the problem [35]. So we generate equilibrium
configurations of finite-size cubic spin samples for fixed val-
ues of our model parameters described above in the Hamil-
tonian (1) using our recently constructed cluster algorithm
of the Wolff type [29] in the critical region and the Metropo-
lis one beyond. This is the best strategy, also to optimize the
time to obtain results with comparable uncertainties.

To prelocate a temperature-driven phase transition point,
we fix a particular value of K, coupling and analyze Binder
cumulant Q. (Ks) = (M2)2 /(M%) dependences (see,
e.g., [18, 21, 27, 36]), where (M), denotes the n*® power
of the order parameter o component, with o = s, o or their
product so, which are averaged over an ensemble of inde-
pendent samples of the size L3. The lack of characteristic
minima in the course of the Q1 (K>) dependences indi-
cates that the phase transition can be continuous [20, 36].

To check if there occurs the latent heat during a phase
transition, i.e., to unambiguously determine the character of
a phase transition and to more accurately determine the loca-
tion of this transition point, we compute also the Challa [37]

(Ea)L
Vor=1— "= 2
LT ®
and the Lee-Kosterlitz [38]
(B2)r
Ua7L — = (3)
(Ea)?

like cumulants. Here (E™), is the n*® moment of the whole
Hamiltonian (o« = H) or the interaction energy of a-degrees
of freedom (« = s, o, or their product so) separately, which
is averaged over an ensemble of independent samples of the
size L3. Thus, we are able to compute the latent heat [, com-
ing from each order parameter (o) with a = s, o, or so
separately [18, 19, 22].

We analyze the dependences V, 1 (K3) which show
characteristic local minima am‘L“ [37] and U, 1,(K3) char-
acteristic local maxima U gji" [38] at a fixed value of K4
coupling in the close critical region. When the thermody-
namic limit ;an value with its error bar remains different
from 2/3 and the U;'7* value with its error bar remains dif-
ferent from 1, we conclude that a phase transition is qualified
to be of the first-order, otherwise we assume that the phase
transition is continuous [18, 22, 37, 38]. The latent heat [,
coming from the whole Hamiltonian (o« = H) or the interac-
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tion energy F, of a order parameter in the thermodynamic
limit

la = Ea.,Jr - Em,, (4)

where E, + = Eo(Ks — K |+), are determined on the
basis of the Lee-Kosterlitz formula [38, 39]

min __ 2 1 EO&,+
Vol = 3 12 (Em_

and using the method proposed in [22]. Eq. (5) was also ob-
tained independently by Borgs, Kotecky, and Miracle-Sole
[40] from a more rigorous point of view. K . in Eq. (5) is
the critical value of K5 coupling with the fixed value of K4
and the quantity Ay stands for L independent expression of
the complicated form [38]. Analogously, we can determine
the latent heat [, on the basis of the U, ; cumulant max-
ima values scaled to the thermodynamic limit for each of
the three « order parameters with & = s, o, or so indepen-
dently, as well as for the whole system (o« = H), using the
Lee-Kosterlitz formula [38]

2
Ea,> Ay

Eo 3

max (EDLHF + Ea,*)z AU

oL = AE E. ﬁ» (6)
o,+ )

where Ay stands for L independent complicated expression.

We conclude from Egs. (5) and (6) that values and loca-
tions of cumulant V,, 7, minima and of cumulant U,, ; max-
ima scale linearly versus L~3. Using Eqgs. (5) and (6) and
the method proposed in [22] we can calculate the values of
E. + and E, _ and estimate the latent heat from Eq. (4).
Moreover, the thermodynamic limit K 5“&‘“ values of minima
and K3'3* values of maxima are far better estimations of the
critical K values than the preliminary ones obtained on the
basis of the Binder cumulant @), 1, (K2) dependences.

Our method presented above [15] gives good results
when the system has unambiguously determined equilibrium
configurations of finite-size cubic spin samples for fixed val-
ues of our model parameters described above in the Hamil-
tonian (1).

However, in the mixed phase region, marked as “(c)”
in Fig. 1, the situation is different: (so) = 0 and there are
two equally probable phases in which either (s) or (o) is
ferromagnetically ordered but the other is not in the ther-
modynamic limit. This causes the values of the computed
thermodynamic quantities to oscillate as during sufficiently
long simulations both phases will appear with approximately
equal probability. Therefore, to obtain clear results we have
worked out a new solution. We propose a conventional di-
vision of our system into two sublattices: the ordered one
which will be marked with a capital letter X and the un-
ordered one marked with a capital letter S. It is important
that the decision to allocate the real spins o and s to these
conventional sublattices is decided only after each MCS is

performed and the results from the spins with greater magne-
tization are systematically added to the results of the conven-
tional sublattice > while the results from the second spins are
added to the results of conventional sublattice S. The number
of MCS must be large enough to compensate the separation
of our system into these two artificial sublattices > and S
in the paramagnetic region. Computations for the product of
spins so do not need to be changed.

We bear in mind that in the mixed phase region "(o)",
two phases are equally probable in which either (s) or (o)
is ferromagnetically ordered but the other is not. In this sit-
uation, we introduce the conventional division into two sub-
lattices, the first one with greater magnetization of ¥ spins,
and the second one with smaller magnetization of .S spins.
Thanks to this division, we get smooth dependences of ther-
modynamic quantities and of cumulant values on the cou-
pling K5 with a fixed value of the coupling K, for the anal-
ysis.

We have located phase transition point precisely enough
to be able to use another independent method of checking
for the presence of the latent heat during a phase transition
with greater accuracy. We compute the probability P, 7, of
the internal energy E, j appearance in the samples of fi-
nite size L. As in the case of cumulants, the P, 1(E,.1)
values are computed independently for each degree of free-
dom o = s, o, or their product so, and also for the whole
Hamiltonian (1) denoted by o« = H, at a critical value Ko .
A characteristic histogram of the this energy F, distribu-
tion with two peaks in the close critical region for first-order
phase transitions can be observed [38, 41, 42]. The maxima
of these peaks appear at the energy value E,, _ j, for the or-
dered state and at F, 1, for the unordered one for the sam-
ples of finite-size L. It is important that for continuous phase
transitions only a single peak of the probability P, 1,(Fq, 1)
dependence appears in the thermodynamic limit. This is an
additional clue for determining the character of a phase tran-
sition.

III. RESULTS AND CONCLUSIONS

We demonstrate our new way of performing MC com-
puter experiments in the mixed phase region “(c)” shown
in Fig. 1, where with equal probabilities there appear two
different, but equivalent, ways of ordering two of the three
order parameters: (so) = 0 and either (s) or (o) is ferro-
magnetically ordered but the other is not. To illustrate our
method, we examine the phase transition for the point with
K4 = —0.3 lying on the HK’ line, which is the boundary of
the “(o)” region and the paramagnetic phase “para” shown
in Fig. 2.

As we show below, we observe here that the values of
characteristic local minima of the dependences V,, 1 (K3)
and the values of characteristic local maxima of the depen-
dences Uy, 1,(K2) for « = X, S, so, and H in the thermo-
dynamic limit scale accordingly to the value 2/3 for minima
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and to 1 for maxima. This means that the transitions are con-
tinuous. Fig. 2 shows the dependence of the thermal aver-
age values of the square of magnetization (M2), for cubic
samples of the finite size L for all three order parameters
with « = ¥, S, and so indicated in the legend. The ver-
tical dotted line indicates the position of the phase transi-
tion point K5 . = 32905(30) estimated below. This figure
also explains the reason for the occurrence of the minima of
the cumulant V,, 1, (K3) dependences and of the maxima of
the cumulant U, 1, (K2) dependences also for a = S and so
for which we have a paramagnetic phase on both sides of the
HK line. The cumulant extremes for « = S and so appear
because in the critical region we observe non-zero magneti-
zation, which, however, disappears as the size L increases,
also shown in the legend, which is in line with expectations.
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Fig. 2. The dependence of the thermal average values of the square
of magnetization (M2), on the coupling K> for the fixed value of
the four-spin interaction K4 = —0.3. The inset shows the (M2) 1,
results for the order parameters (o) with « = S and so, where
the scale of the magnetization values is logarithmic. The values of
the size L and items for o are explained in the legend. The verti-
cal dotted line indicates the position of the phase transition point
K> . = 32905(30). The error bars are of the order of magni-
tude of symbols. Lines connecting the points have been drawn to
guide the eye

From this introduction we can also see that at the begin-
ning of the research it is necessary to determine the place
of the phase transition marked with the vertical dotted line
in Fig. 2. We obtain a preliminary estimation of the phase
transition point from the intersections of the Binder cumu-
lant [18, 21, 27, 36] curves Q.1 (K3) at the fixed value of
the coupling K4y = —0.3 presented in Fig. 3. This analy-
sis has been performed for (X) order parameter, allowing us
to estimate three to four decimal digits of the K» coupling
critical value Ko . = 0.3274(18). Here Qyx, 1 (K2) curves
intersect in such a way that for L1 < Lo at Ky < Ks
one has Qs 1, > Qs 1,, while at Ky > K, . there appears
Qx.1, < Qs,1,. The error bar should be estimated carefully
here, as it is only an approximate indication of the critical re-
gion.
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Fig. 3. The Binder cumulant Qs 1, (K>) dependences for the sys-
tem size L values specified in the legend at the fixed value K4 =
= —0.3. The inset shows the region in which these curves intersect.
For clarity, the results for selected L values are presented. Lines
connecting the points have been drawn to guide the eye

To check if there appears the latent heat during the phase
transition and to improve the location of this transition point,
we estimate the values and positions of cumulants V,, ;, min-
ima shown in Fig. 4 and of cumulants U, ; maxima illus-
trated in Fig. 5 for degrees of freedom ¥ (o = ) or for
the whole system (o« = H). To average the scatter of the
results and to determine more precisely the ordinates of ex-
trema V(ff‘iL“ and U,'7* as well as their abscissas K. g‘g‘ 1, and

2.a.1» Our MC data were approximated by a polynomial of
the third degree and marked by solid lines in Figs 4 and 5.
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Fig. 4. The dependences Vs, 1, (K2) with characteristic local min-
ima for system sizes L listed in the legend at the fixed value
K4 = —0.3. For clarity, the results for selected L values are pre-
sented. The horizontal dashed line indicates the limit 2/3 value.
Lines connecting the points have been drawn to guide the eye

To estimate the value of the latent heat, we have ex-
ploited the Challa-like V, ; and the Lee-Kosterlitz-like
U, 1, cuamulant properties explained in the previous section.
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Fig. 5. The dependences Us, 1, (K2) with characteristic local max-
ima for system sizes L listed in the legend at the fixed value
K4 = —0.3. For clarity, the results for selected L values are pre-
sented. The horizontal dashed line indicates the limit 1 value. Lines
connecting the points have been drawn to guide the eye

We have first calculated the values of the cumulant V7, r,
minima and of the cumulant U, ; maxima in the thermo-
dynamic limit using linear regression for VOIC?}J“(L*‘O’) and
for UP¥*(L~?%) dependences with a = ¥ and H, which
follow from Egs. (5) and (6), respectively. The analysis is
illustrated in Fig. 6 for the Challa-like V,, ;, cumulant and
in Fig. 7 for the Lee-Kosterlitz-like U, ; cumulant at the
fixed value of the coupling K, = —0.3 for a = X and
H indicated in the legend. The results of this extrapolation
are Vil = 0.6673(8) and Vil = 0.663(5) as well as
UgaX = 0.9999(4) and Ux%S = 1.0017(24). One can see
the clear linear character of our MC computer experiment
data. There is the limit value 2/3 within the cumulant V;n;g
values with their error bars and the limit value 1 within the
cumulant U5'5% values with their error bars in the thermody-
namic limit for « = ¥ and H. This means that the value of
the latent heat here is zero.

Since for the conventional degrees of freedom > and
S we have gathered contributions from both equally prob-

able phases: this with (o) nonzero and (s) = 0 as well
as with (o) = 0 and (s) nonzero, thus we have shown
that the phase transition at the point with K4 = —0.3 and

K5 = 0.32905(30) is continuous.

Fig. 8 shows that the abscissas of the cumulant Vs, 1,(K>)
dependences minima and the abscissas of the cumulant
Us,1.(K2) dependences maxima within the limits of error
bars in the thermodynamic limit scale to the same criti-
cal value Ky, = 0.32905(30). As the value of K5 ., we
have assumed the mean value of the Challa-like cumulant
K35 00,v = 0.3290(3), and of the Lee-Kosterlitz-like cu-
mulant Ky 5 oo v = 0.3291(3). As shown in Fig. 8, these
results are consistent with the preliminary estimation of
K35 00,0 = 0.3274(18) obtained above using the Binder
cumulant. Since we have obtained this Ko . value for the
conventional degrees of freedom ¥ and S, we conclude that
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0.5 e e s
0 le-05 3e-05 4e-05
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L 3

Fig. 6. The values of Challa-like cumulants minima V;‘fiL“ for

«a = ¥ and H extrapolated to the thermodynamic limit at the fixed

value of the coupling K4 = —0.3. The items « and symbols are ex-

plained in the legend. The dependences are fitted by straight solid

lines using linear regression. The horizontal dashed line indicates
the limit 2/3 value
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Fig. 7. The values of Lee-Kosterlitz-like cumulants maxima U7

for « = ¥ and H extrapolated to the thermodynamic limit at the

fixed value of the coupling Ky = —0.3. The items « and symbols

are explained in the legend. The dependences are fitted by straight

solid lines using linear regression. The horizontal dashed line indi-
cates the limit 1 value

this is the phase transition point for both equally probable
phases: the one with (o) nonzero and (s) = 0 as well as the
second with () = 0 and (s) nonzero. We observe similar
behavior along the entire HK’.

We have also computed the probability P, ;, of the in-
ternal energy F, ;, appearance in the samples of finite size
L3. As for cumulants, the P, 1,(F,, 1) values are computed
independently for degrees of freedom o = %, and also for
the whole Hamiltonian (1) denoted by o = H, at the cal-
culated precisely enough critical value K5 . = 0.32905(30).
The histogram of the this energy F, distribution contains
only one peak in the close critical region for « = X and H.
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This is the independent confirmation that the phase transition
is continuous.
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Fig. 8. Abscissas K;“g‘ r,v of cumulants Vs p minima and

K3$* v of cumulants Us, . maxima extrapolated to the thermo-

dynamic limit at the fixed value of the coupling K4 = —0.3.

The symbols are explained in the legend. The dependences are fit-
ted by straight solid lines using linear regression

In summary, we have demonstrated the way of perform-
ing our recently published MC experiments [15] in a mixed
phase region that is difficult to study, as with certain proba-
bilities there appear different ordering ways, which results in
a large oscillation of the values of the computed thermody-
namic quantities, which makes their interpretation very dif-
ficult. We have presented our method on the example of the
point with K4 = —0.3 on the boundary between the mixed
phase region “(o)” and the paramagnetic one in the phase
diagram of 3D AT model shown in Fig. 1. However, this
method can be successfully applied to other spin lattice mod-
els whose phase diagram contains a mixed phase region.
In the “(0)” region with equal probabilities there appear two
different equivalent ways of ordering two of the three order
parameters: (so) = 0 and either (s) or (o) is ferromagneti-
cally ordered but the other is not.

Our concept to obtain clear results is based on that, there
is a conventional division of our system into two sublattices.
The ordered one which is marked with a capital > and the
unordered one marked with a capital .S. The decision to allo-
cate the real spins o and s to these conventional sublattices
is decided only after each MCS is performed and the results
from the spins with greater magnetization are systematically
added to the results of conventional sublattice 3 while the re-
sults from the second kind of spins are added to the results of
conventional sublattice S. We have controlled that the num-
ber of MCS is large enough to compensate the separation of
our system into these two artificial sublattices ¥ and S in the
paramagnetic region.

Since for the conventional degrees of freedom X and
S we have gathered contributions from both equally prob-
able phases: this with (o) nonzero and (s) = 0 as well

as with (o) = 0 and (s) nonzero, thus we have shown
that the phase transition at the point with K4, = —0.3 and
K5 = 0.32905(30) is continuous.

In contrast to the results published so far in the bibliogra-
phy, the implementation of our new approach in our MC ex-
periment allowed us to use Binder cumulant, the Challa-like
and the Lee-Kosterlitz-like cumulants, as well as the internal
energy distribution histogram to obtain clear results a mixed
phase region. According to the most effective strategy, in the
critical region we have used our recently proposed cluster
MC algorithm [29] and the Metropolis algorithm beyond the
critical region, which are suitable for both, the first-order and
continuous phase transitions in the 3D AT model.
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