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Abstract: We consider the practicalities of defining, simulating, and characterizing “Liquids” from a pedagogical stand-
point based on atomistic computer simulations. For simplicity and clarity we study two-dimensional systems throughout.
In addition to the infinite-ranged Lennard-Jones 12/6 potential we consider two shorter-ranged families of pair potentials.
At zero pressure one of them includes just nearest neighbors. The other longer-ranged family includes twelve additional
neighbors. We find that these further neighbors can help stabilize the liquid phase. What about liquids? To implement
Wikipedia’s definition of liquids as conforming to their container we begin by formulating and imposing smooth-container
boundary conditions. To encourage conformation further we add a vertical gravitational field. Gravity helps stabilize the rel-
atively vague liquid-gas interface. Gravity reduces the messiness associated with the curiously-named “spinodal” (tensile)
portion of the phase diagram. Our simulations are mainly isothermal. We control the kinetic temperature with Nosé-Hoover
thermostating, extracting or injecting heat so as to impose a mean kinetic temperature over time. Our simulations stabilizing
density gradients and the temperature provide critical-point estimates fully consistent with previous efforts from free energy
and Gibbs ensemble simulations. This agreement validates our approach.
Key words: liquids, statistical physics, molecular dynamics, tension, spinodals, phase equilibria

I. WHAT IS LIQUID? [IN TWO DIMENSIONS]

This work had its origin in the recent death of our col-
league Douglas Henderson [1]. Bill’s friendship with Doug
dated back to the 1960s, their early years as scientists, work-
ing at the Lawrence Livermore Radiation Laboratory (Bill)
and IBM’s Almaden Research Centre in San José (Doug).
Bill and Carol visited Doug and RoseMarie’s homes south
of San Francisco and, after the Loma Prieta earthquake

of 17 October 1989, in Sandy Utah. These visits became
more frequent following the Hoovers’ move to Ruby Valley
Nevada in 2005.

All four of us authors have carried out research work de-
voted to a longstanding challenge of equilibrium statistical
mechanics, a better understanding of liquid state structure.
The Mayers’ virial series for gases and the Einstein and De-
bye models for ordered solids provide a relatively accurate
understanding of matter’s simplest pair of phases. Liquids
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remain more mysterious. The question asked by Doug and
John Barker in 1976 [2] was a good one and remains so to-
day. Bill adopted this same title as the basis for two publi-
cations, one in 1998 [3], the second in 2014 [4], the latter as
part of the celebration of Doug’s 80th birthday.

II. VAN DER WAALS’ 1873 MODEL
FOR GASES AND LIQUIDS

Though atomistic liquid structure remains mysterious,
van der Waals provided us with his Nobel Prize winning
macroscopic “equation of state”. This thermodynamic model
describes both gases and liquids as well as the “critical” con-
dition at which the two become indistinguishable. van der
Waals chose two material properties to describe the strengths
of the attractive and repulsive contributions to the pressure
and energy of fluids, both gaseous and liquid. For simplicity
we adopt “reduced units” here, setting van der Waals’ mate-
rial properties a, characterizing attraction, and b, characteriz-
ing repulsion, both equal to unity. Throughout this work we
use reduced units, setting particle masses and Boltzmann’s
constant both equal to unity in addition to the potential pa-
rameters and van der Waals’ a and b. In two space dimen-
sions, with kinetic energy K =

∑
(p2x + p2y)/2 = NT ,

van der Waals’ mechanical and thermal equations of state
are:

(P+ρ2)(1−ρ) = ρT [Mechanical] ; e = T−ρ [Thermal] .

P , ρ, T , and e – pressure, density, temperature, and in-
ternal energy – are the macroscopic thermodynamic vari-
ables linked together by van der Waals in his 1873 dis-
sertation on The Continuity of the Gas and Liquid States.
For consistency with thermodynamics the resulting mechan-
ical and thermal properties of these fluids are correlated by
the second-derivative “Maxwell relation” that follows from
the mixed partial derivatives of [A/T ] with respect to volume
and temperature, (∂2[A/T ]/∂V ∂T ) = (∂2[A/T ]/∂T∂V )
where A is Helmholtz’ free energy, E − TS and S is en-
tropy:

(∂[P/T ]/∂T )v = (∂[e/T 2]/∂v)T = (ρ/T )2

for van der Waals.

According to van der Waals’ model and likewise in ac-
cord with nature, the gas and liquid phases can only be
distinguished at temperatures below a critical isotherm, on
which the unstable minima and maxima of van der Waals’
pressure equation, a cubic in the density, coalesce. The “crit-
ical point” on this isotherm is the only location in the
pressure-density plane where the isothermal slope and cur-
vature simultaneously vanish:

(∂P/∂ρ)T = 0 and (∂2P/∂ρ2)T = 0 −→
−→ {Pc = 1/27, ρc = 1/3, Tc = 8/27} .

At this critical point the two fluid states, gas and liquid, be-
come indistinguishable. They also become hard to investi-
gate as the vanishing first derivative implies infinite com-
pressibility, −d lnV/dP , and zero sound speed, as c =

Fig. 1. At the left is van der Waals’ phase diagram and at the right the two-dimensional Lennard-Jones analog [5]. In the van der Waals
case the isothermal and isentropic spinodal lines, where the corresponding compressibility diverges, are shown. In the Lennard-Jones case,
with its solid phase, there is a triple point near T = 0.4 below which the gas and solid coexist. Between the triple-point temperature and

the critical temperature (roughly 0.56) lower-density gas and higher-density liquid can coexist
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=
√

(∂P/∂ρ)S ∝
√

(∂P/∂ρ)T , where S is entropy. This
singular behavior of the pressure derivatives is reflected in
the macroscopic nature of critical density fluctuations big
enough to see. The fluctuations are observed visually as
a milky “critical opalescence”.

For any temperature less than the critical temperature
value Tc = (8/27) van der Waals’ model gives two values
of the density which can coexist at mechanical and thermal
equilibrium. In addition to these “binodal” points there are
two other density values on every subcritical isotherm and on
some adiabats between which the van der Waals equation of
state is mechanically unstable. These pairs of points form the
high-density and low-density boundaries of unstable isother-
mal and adiabatic “spinodal regions”, within which at least
one of the two van der Waals’ compressibilities is negative.
Straightforward algebra shows that van der Waals’ adiabatic
spinodal line [where (∂P/∂ρ)S vanishes] has the same form
as the isothermal line, but at half the temperature:

Tisothermal = 2ρ(1− ρ)2 = 2Tadiabatic .

The van der Waals model’s “binodal” equilibrium coex-
istence curves and the “spinodal” curves of divergent com-
pressibility are characteristic of many real macroscopic flu-
ids and common microscopic fluid models which include
both attractive and repulsive pair forces. The best known mi-
croscopic model is Lennard-Jones’ 12/6 potential from the
1920s:

φLJ(r) = (1/r)12 − 2(1/r)6 −→ φ′(1) = 0 ; φ(1) = −1 .

The van der Waals and Lennard-Jones phase diagrams are
compared in Fig. 1. Although van der Waals’ equation has
no solid phase, a more sophisticated state-equation model,
based on the known hard-disk equation of state, for disks of
diameter σ and number density ρ = (N/V ):

(PV/NkT ) = (PV/NkT )disks − ρ
[with B2 = (π/2) and diameter σ ≡ 1 for disks] ,

provides a three-phase equation of state analogous to van der
Waals’ two-state solution. The critical parameters depend
upon the reduced units chosen for the hard-disk model. With
disk diameter σ and Boltzmann’s constant set equal to unity
this model gives (Pc, ρc, Tc) = (0.019, 0.269, 0.216)
with a dimensionless compressibility factor (PV/NkT ) =
= 0.326, quite close to the value of (1/3) obtained by
using a maximally truncated three-term virial expansion,
(PV/NkT ) = 1 +B2ρ+B3ρ

2.
It is evident from Fig. 1 that pair potential models can

provide a semi-quantitative understanding of the coexistence
and coalescence of the less-dense gas and more-dense liquid
phases of simple fluids, where both phases are formed from
the same ingredients.

Understanding the details of the microscopic structure
leading to this macroscopic behavior is an excellent illustra-
tion of the problem areas all four of us authors have enjoyed

exploring. Before entering into the details of our own work
let us consider the progressive steps leading from van der
Waals equation in the late 1800s up to Barker and Hender-
son’s review a century later.

III. THEORIES AND MODELS
OF THE LIQUID STATE

In the late nineteenth century critical-point experiments
were carried out by heating a known quantity of liquid
in a sealed tube with an obvious “meniscus”. That word,
“meniscus”, comes from the Greek for “curved moon”. It is
because the two phases interact with their container’s sur-
face differently that the meniscus separating them is curved.
Near the “critical point”, where gas and liquid become indis-
tinguishable, dramatic density fluctuations broaden and de-
stroy the meniscus separating the two coexisting phases.

In 1882 Hannay declared “The formation of a menis-
cus is the only test of the liquid state” [6]. That menis-
cus definition is superior to Wikipedia’s notion, “Liquid is
a nearly incompressible fluid that conforms to the shape
of its container”. Hannay was right. A liquid-gas interface, or
meniscus, with the liquid the denser of the two fluid phases,
is necessary to distinguish the one phase from the other.
Wikipedia’s liquid definition would include dense fluids of
hard disks or spheres. But neither of those hard-particle sys-
tems has the attractive forces necessary to stabilize a liquid
phase.

By 1900, with the advent of Boltzmann and Gibbs’ sta-
tistical mechanics, atomistic models became important. Ki-
netic theory and lattice dynamics offered useful descriptions
of gases and solids. Good structural models for liquids were
absent. This lack soon motivated the construction of physi-
cal models of liquid structure. In 1930s London John Bernal
simply added more and more ball-bearing particles to ball-
and-stick or conglomerate balls-in-paint structures. Bernal
found that the radial distributions of pairs of balls resem-
bled those inferred from radiation experiments on real liq-
uids. At about this same time Joel Hildebrand, in Berkeley,
immersed more than 100 gelatin balls in a fish tank, likewise
finding that the distribution of the balls’ separations resem-
bled the distributions of interparticle distances in liquid ar-
gon, scaled up by eight-or-so orders of magnitude. Bernal
and Hildebrand were looking for bulk liquid structure, not
the interfacial menisci stressed by Hannay.

John Barker devoted most of his working life to the un-
derstanding of liquids [7], publishing his only book, Lattice
Theories of the Liquid State in 1963, just as it was becoming
clear that lattices were not a proper starting point for “under-
standing”. Before he and Doug Henderson had discovered
and implemented perturbation theory Barker had attempted
to improve his understanding of liquids by extending “lat-
tice theories”, like the Ising Model. That model, with its
hole-particle symmetry, seems very distant to real liquids.
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Barker invented “tunnel models”, taking advantage of the
mathematical simplicity of one-dimensional chains of parti-
cles, coupled with a symmetry-breaking description of the
tunnel locations. In tunnel models for simple atoms one-
third of the degrees of freedom are longitudinal and two-
thirds are transverse to the tunnels. Barker’s collaboration
with Doug in the 1960s, based on a perturbation theory of
the Helmholtz free energy, was soon to provide a surpris-
ingly useful predictive theory. The theory provided all the
liquid thermodynamic properties based on known proper-
ties of hard spheres. This hard-sphere-based theory’s success
seems a bit puzzling because the underlying model is itself
incapable of providing the two-fluid meniscus characteristic
of real liquid-gas coexistence.

IV. PROGRESS IN UNDERSTANDING
FROM COMPUTER SIMULATIONS

Soon after World War II, in the 1950s, the advent of com-
puters opened up completely new research opportunities.
Alder, Jacobson, Wainwright, and Wood developed Monte
Carlo and molecular dynamics simulation algorithms mod-
eling equilibrium distributions of dozens or hundreds of hard
particles in two and three space dimensions. They discovered
and characterized the hard-disk and hard-sphere fluid-solid
transitions [8, 9]. These melting-freezing transitions occur
when the solid phases are expanded about ten percent in
(x, y) or (x, y, z), corresponding to melting densities, rela-
tive to close-packed, of about (4/5) (for disks) and (3/4) (for
spheres).

In 1958 Jerry Percus and George Yevick formulated an
integral equation for the pair distribution function [10]. Mike
Wertheim solved the equation analytically for hard spheres
five years later [11]. A numerical solution of the hard-disk
analog appeared half a century later, in 2008. The ana-
lytic work for spheres gave an excellent approximation to
the hard-sphere distributions from Monte Carlo and molec-
ular dynamics simulations. These developments led to the
successful refinements of perturbation theory reviewed by
Barker and Henderson in 1976. Their approach was paral-
leled by several other dedicated scientists, among them Farid
Abraham, Hans Andersen, Frank Canfield, David Chandler,
Ali Mansoori, Jay Rasaiah, George Stell, and John Weeks.

V. BARKER AND HENDERSON’S DESCRIPTION
OF “LIQUIDS”

After a decade working together Barker and Henderson
addressed our title question from the standpoint of pertur-
bation theory, in 1976. Rather than constructing physical
many-body models they adopted the results of hard-particle
computer simulations to develop and evaluate a perturba-

tion theory based on the Percus-Yevick hard-sphere distri-
bution function. They treated attractive forces as a pertur-
bation added to a reference repulsive potential. The result-
ing free energy calculations related the thermodynamics of
homogeneous liquids to hard-sphere fluid-phase properties.
Helmholtz’ and Gibbs’ free energies can alternatively be
found by integrating equation of state data taken from Monte
Carlo or molecular dynamics simulations. With today’s com-
puters brute-force simulation is the more practical and much-
simpler approach.

Barker and Henderson summarized the state of the art
of the 1970s perturbation work in their review. In its sim-
plest form liquid perturbation theory is based on opti-
mizing a reference-system’s hard core size by minimizing
Helmholtz’ free energy at fixed values of the density and
temperature. The success of this theory is due to the fact
that thermodynamics requires no treatment of mixed-phase
systems. Consequently perturbation theory can be based on
reference hard-particle systems which lack a liquid phase
and its corresponding meniscus. Bill Wood, at Los Alamos,
pointed out that the hard-particle systems’ fluid-solid surface
tension is negative. Thus drops of hard disks and spheres
don’t form. Unlike models with attractive forces hard parti-
cles don’t form clusters.

VI. CONCEPTUAL DIFFICULTIES:
LIQUIDS’ “SPINODAL REGION”

There is a tremendous literature on the “spinodal” re-
gion of the phase diagram [12–14]. For van der Waals’ equa-
tion this is usually taken to be the mechanically-unstable
region with negative isothermal compressibility. In princi-
ple a negative compressibility, either isothermal or adiabatic,
generates exponential growth of density fluctuations and so
is to be prohibited in realistic fluid models. Thus the borders
of a spinodal region for real fluids, if there were one, would
be hard to access and describe. Wedekind et alii described
access to the spinodal regions well [13]:

“It would be very complicated, if not
practically impossible, to reach the spinodal.”

The internet reveals that “spinodal” originated as a syn-
onym for “cusp”. This explanation seems curiously incom-
plete (and mercifully absent from most textbooks) as no
cusp is apparent in realistic phase diagrams like those of van
der Waals or the Lennard-Jones potential. See again Fig. 1.
We consider a region with negative compressibility strange,
artificial, and “unstable”. Shamsundar and Lienhard explic-
itly object [12] to the term “unstable”, citing the reality of
nearby states of superheated liquids and supercooled gases,
likewise nonequilibrium states not appearing in a conven-
tional single-valued phase diagram. Any fluid under tension
and subject to mechanical noise cannot persist unchanged
for long. Solids do characteristically exhibit tensile strength
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but still can suffer shear instabilities. We will illustrate such
models later in this work. There is as yet no accepted stan-
dard for bulk “liquid” structure, though not for lack of trying.

In the context of the usual single-component thermody-
namics for a simple material like argon the spinodal region of
the phase diagram corresponds, at least conceptually, if not
in the laboratory, to a mix of a denser liquid and a less-dense
gas. Because such a system isn’t homogeneous it is clear
that a simple phase diagram or a model like van der Waals’
is an incomplete description. Simulations in this region lead
to highly-complex evolving structures of transient rotating
clusters or clumps of particles. The properties of nonequi-
librium clusters are complex, involving surface tension and
rotational contributions to the energy, making the character-
ization of “pressure” somewhat uncertain.

In our own effort to clarify the ambiguities of “spin-
odal states” for two-dimensional fluids we thought it pru-
dent to consider three different initial conditions, all of them
equally plausible a priori. With Lennard-Jones forces both
the square lattice, sufficiently expanded to reach a density
of 0.4, or a triangular lattice expanded to that same density,

have energies exceeding that at the critical point and so can-
not serve as models for a spinodal state using conservative
mechanics. A simple way out of this energy problem is to
consider isothermal molecular dynamics, starting and finish-
ing at an imposed kinetic temperature less than critical and
greater than that at the triple point. Such a choice lies some-
where in a nonequilibrium liquid range. In two space dimen-
sions, the Lennard-Jones critical and triple-point tempera-
tures are on the order of 0.56 and 0.4 according to Barker,
Henderson, and Abraham [5]. We have chosen the tempera-
ture 0.5 as our standard initial (and final, time-averaged) con-
dition for our exploratory molecular dynamics simulations.
See Fig. 2 for a sample evolution from an unstable square
lattice. An expanded triangular lattice provides a similar his-
tory. A third possibility, illustrated in Fig. 3 is to divide up
the system into cells with the structure in each cell chosen
randomly. A special case of this choice takes a regular stress-
free lattice with the number of randomly-located vacancies
chosen to satisfy the desired density, 0.4 in our case, close to
the Barker-Henderson-Abraham estimate of the critical den-
sity in Fig. 1.

Fig. 2. Four snapshots in a “spinodal” evolution. The dynamics is Nosé-Hoover isothermal at the subcritical temperature T = 0.5.
The initial condition, at the left, is a perfect square lattice of area 4000 containing 1600 Lennard-Jones particles. Fourth-order Runge-
Kutta integration with dt = 0.005 to time 40. The instability of the lattice gives rise to coarsening, soon forming a percolating cluster

spanning the volume [14]. Boundary potentials quartic in dx and dy repel any particles with |x| or |y| exceeding
√

1000 = 31.623
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Fig. 3. Four snapshots in a “spinodal” evolution. The dynamics is Nosé-Hoover isothermal at the subcritical temperature T = 0.5.
The initial condition was a perfect square lattice of 3600 sites in an area 4000 with 1600 of the sites, randomly chosen, containing

Lennard-Jones particles. Boundary potentials quartic in dx and dy repel any particles with |x| or |y| exceeding
√

(1000) = 31.623

The two sample evolutions shown here are typical of
the spinodal region. The equilibrium phase diagram disal-
lows states under tension. There is an initial exponential
growth of density fluctuations, followed by a slower coars-
ening of clusters to form a percolating cluster spanning the
entire volume [14]. The details of the first exponentially un-
stable phase depend upon the initial conditions. The details
of the second phase, with the nonequilibrium equilibration
of growing clusters, are relatively easy to see but hard to pre-
dict [15], suggesting the exploration of alternative methods
for characterizing liquids.

Gravity can take us in the direction of Hannay’s menis-
cus. The evolution of an initial state toward the formation of
a meniscus can be visualized by adding a small gravitational
field to the dynamics. With a field the liquid state lies be-
low the vapour with which it equilibrates. The Fig. 1 phase
diagram for Lennard-Jones’ potential indicates that a liq-
uid about six times denser than its vapour should be stable
at a temperature of 0.5, well below the critical temperature of
0.56 and above the triple point temperature of 0.4. This sug-
gests a feedback dynamics similar to the “Gibbs ensemble”
algorithm, with particles transferred from interacting simu-
lations with a common pressure and temperature. Feedback

within a single simulation provides a less singular evolution.
Let us turn to dynamics in the presence of an external gravi-
tational field.

VII. IMPLEMENTING A “LIQUID” VISION
WITH MOLECULAR DYNAMICS

In the present work we consider the need, and fill it,
for a “meniscus” separating a “gas” from a “liquid” fluid.
We stabilize and investigate the interfaces defining phase
boundaries. To do this we first of all model the idea of a phys-
ical “container”, to which all the particles in our simulations
must conform. To simulate the dynamics of such a many-
body system we enclose it within a special fixed boundary,
a smooth nearly-rigid container modeled with a quartic re-
pulsive surface potential.

In keeping with the expected accuracy of a fourth-
order Runge-Kutta integration of the motion equations we
adopted one-sided quartic potentials to contain our simula-
tions. We begin with both rectangular and circular “contain-
ers” for our molecular dynamics. The boundary potential en-
ergy in the circular case is (dr4/4) where dr is the depth of



What is Liquid? [in two dimensions] 11

penetration beyond a circular boundary of radius r. To reflect
escaping particles in the rectangular case the boundary po-
tentials are (dx4/4) and (dy4/4) imposed on the four sides

Fig. 4. An equilibrium snapshot of 400 Lennard-Jones particles
at T = 1 confined by square boundary potentials at ±

√
250 =

= 15.811. The density is 0.4. The simulation time t = 100 is
adequate for equilibration. Here, and mostly throughout, we use
fourth-order Runge-Kutta integration with a timestep dt = 0.005

Fig. 5. An equilibrium snapshot of 400 Lennard-Jones particles
at T = 1 confined by a circular quartic boundary potential at
r =

√
1000/π = 17.841. The snapshot was taken after 20 000

timesteps with dt = 0.005. The density is 0.4. The simulation time
t = 100 is adequate for equilibration

of a rectangular container. dx and dy are the penetrations be-
yond the vertical and horizontal walls of a rectangular con-
tainer. See Figs. 4 and 5 for typical equilibrium snapshots
of 400 Lennard-Jones particles with the density and kinetic
temperature at a fluid state point well above the gas-liquid
coexistence curve, ρ = 0.4; T = 1 > Tc ' 0.56. The wild
density fluctuations seen in these two equilibrium snapshots
rightly suggest that time-averaging is needed to aid the anal-
ysis of the gas-liquid meniscus structure.

The figures document that typical penetrations, beyond
the quartic boundaries, are about one particle diameter, con-
sistent with an energy-based estimate:

(dx4/4) ' (dy4/4) ' (dr4/4) ' T = 1→ dr ' 1.414 .

With these straightforward model boundary potentials pro-
viding a conforming container we next seek out a means
for emphasizing and localizing the meniscus characteristic
of the liquid state.

VIII. STABILIZING THE MENISCUS
WITH GRAVITY

Barker and Henderson were satisfied with a formal semi-
quantitative perturbation theory based on a reference hard-
core potential. We prefer a more physical approach, based
on observations of phase equilibria. For us, a stable interface
separating a liquid from its less-dense gas is the necessary
and defining aspect of liquid behavior. From the observa-
tional standpoint to be sure one is viewing a liquid (as op-
posed to a gas or hard-particle fluid) requires observing the
interface separating the two varieties of simple fluids, the liq-
uid and the gas. This is easy to do by simulating a gas bub-
ble surrounded by liquid or a liquid drop in a dilute gas; but
such clearcut obervations become blurred nearer the “crit-
ical point” where fluctuations are macroscopic. There the
manybody dynamics is dominated by percolating clusters of
macroscopic size.

To encourage our particles’ conformation to their con-
tainer with a visible meniscus we include a second inno-
vation, a constant vertical acceleration, −g for each of our
computational particles. This constant downward force is
added to the pairwise forces from other particles and to the
boundary forces defining our containers:

F = Fpair + Fpenetration + Fgravity .

We harbor the optimistic assumption that such a combina-
tion of particle plus boundary plus gravitational forces will
accommodate not only a gas-liquid interface but also the
liquid-solid one. In 1977 Ladd and Woodcock demonstrated
that sufficiently close to the triple point it is possible to see
both of these liquid interfaces simultaneously [16]. At such
a “triple point” there are no thermodynamic “degrees of free-
dom”. All three phases coexist at the same pressure and tem-
perature. By adding gravity we provide our fluid systems
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with a pressure gradient satisfying the continuum force bal-
ance, (dP/dy) = −ρg in the stationary state. The pressure
gradient (dP/dy) forces the fluid to conform its shape to its
container, and, over a wide range of pressures, serves to lo-
calize and illustrate the gas-liquid and liquid-solid interfaces.

The phenomena of yield stress (for the solid) and sur-
face tension (for the liquid) could prevent shape conforma-
tion unless these properties can be overcome by gravitational
or rotational forces. We have chosen gravity as the simpler
of these two choices. Finally, in order to prescribe the over-
all temperature of our two-phase or three-phase systems we
apply Nosé-Hoover isothermal dynamics with a target tem-
perature TNH:

TNH = 〈(K/N)〉 = 〈(p2x/2) + (p2y/2)〉 .

IX. IMPOSING KINETIC TEMPERATURE
ON MOLECULAR DYNAMICS

The fundamental conceptual basis of our present work is
conservative Hamiltonian molecular dynamics. We include
the forces and potential energies from a constant gravita-
tional field as well as those describing special containerized
boundary conditions. For flexible control of the simulations,
and to accelerate convergence, we generalize the underlying
mechanics to include Nosé-Hoover control of temperature.
Let us next outline the Nosé-Hoover control mechanism.

Molecular Dynamics with specified kinetic temperatures
has made steady-state nonequilibrium simulations a standard
method for simulating steady nonequilibrium flows of mass,
momentum, and energy. In 1984 Nosé introduced his novel
time-reversible Hamiltonian dynamics. He treated the ki-
netic temperature as an independent variable imposed on the
dynamics. This is accomplished by augmenting the many-
body motion equations with a time-reversible friction coeffi-
cient ζ. Hoover provided a simplified formulation of Nosé’s
approach which has been widely adopted. We use it here:

{ẋ = px ; ṗx = Fx − ζpx ; ẏ = py ; ṗy = Fy − ζpy}
ζ̇(t) = (1/Nτ2)[K(t)− 〈K〉] [Nosé-Hoover Dynamics] .

Here 〈K〉 is the constant target value of the kinetic energy,
imposed by ζ. In the two-dimensional systems we consider
the kinetic temperature is T = (1/N)

∑
(p2x + p2y)/2 =

= (K/N), and the relaxation time τ can be chosen as a typ-
ical collision time. For the current simulations we have cho-
sen τ = 1.

If it is desirable to accelerate convergence it is quite
practical to begin with a higher imposed temperature and/or
a higher gravitational field. With Runge-Kutta integration it
is perfectly feasible to specify analytic time dependences for
these target temperatures and fields, T (t) and g(t), within
the equations of motion.

For simplicity and clarity we restrict our investigations
to two-dimensional systems. We look directly at coexisting

phases, so as to avoid the need for free energy calculations.
Corresponding implementations for three-dimensional sys-
tems are straightforward. This will be clear as we discuss the
necessary diagnostics for analyzing the results of our com-
puter simulations.

X. ISOTHERMAL LENNARD-JONES FLUIDS
WITH GRAVITY

The simulations leading to Figs. 4 and 5, when time-
averaged, correspond to equilibrium homogeneous fluids
due to the lack of any organizing field. Figs. 6 and 7, which
include gravity, illustrate very different situations incorpo-
rating menisci. They snapshot the evolving morphology of
640 Lennard-Jones particles in square and round containers
of enclosed volume 1600, corresponding again to a near-
critical density ρ = 0.4. In both these highly inhomoge-
neous systems the gravitational field strength is g = 0.01.
The slightly subcritical kinetic temperature, 〈(p2x + p2y)/2〉,
is 0.5, and the Nosé-Hoover relaxation time imposing it is
unity. The underlying two-million-timestep simulations in-
cluding all (640 × 639/2) Lennard-Jones interactions take
a half day on a desktop computer. The two field-driven fig-
ures, with four sample snapshots from the last halves of the
runs, both show a denser phase ρ ' 1 below a lower-density
gas phase ρ ' 0.1. We will see in Fig. 17 that time-averaging
isothermal snapshots provides additional simplicity and con-
siderable clarity.

Koch, Desai, and Abraham’s comprehensive spinodal
work using the Lennard-Jones potential [14] suggests a gas-
liquid density ratio of roughly 1/6 at T = 0.5. In our ear-
lier exploratory simulations the gravitational field strength
obeyed a feedback differential equation based on gener-
ating our desired factor of six in the density difference,
ġ = 0.01[Ngas(t) − (N/7)]. Ngas is simply the number of
particles with positive y coordinates. Because the resulting
fluctuating field strength was close to 0.01 we adopted the
simpler and smoother approach of using a constant gravi-
tational field for Figs. 6 and 7. With cartesian coordinates
{q = (x, y), p = (px, py)} the 4N + 1 differential equa-
tions of motion are:

{q̇ = p ; ṗ = F − ζp}

ζ̇ = (K/N)− 0.5 ; K ≡
∑

(p2x + p2y)/2 .

The summed forces F on each particle include pair forces,
gravity, and the container forces. We add on the thermo-
stat forces, {−ζp}, assigned the task of imposing isother-
mal conditions throughout the container. The particle inter-
actions are Lennard-Jones without any cutoff, with quartic
boundary potentials on the sides of the square container and
along the perimeter of the circular container.

Individual densities {ρi}, at each particle or at any grid
point (xg, yg), can be defined, and evaluated numerically,
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Fig. 6. Four Nosé-Hoover Lennard-Jones snapshots at times 12 500, 15 000, 17 500, and 20 000. Gravitational field 0.01 with 640
particles confined by a square boundary, quartic potentials at |x| = 20 and |y| = 20. Timestep 0.005 and T = 0.5. Fourth-order Runge-

Kutta integration

Fig. 7. Four Nosé-Hoover Lennard-Jones snapshots at times 12 500, 15 000, 17 500, and 20 000. Gravitational field 0.01 with 640 particles
confined by a circular boundary at r =

√
x2 + y2 =

√
1600/π = 22.568. Timestep dt = 0.005 and T = 0.5
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with the help of Leon Lucy’s two-dimensional “smooth-
particle” weight function [17]. The weight function spreads
the influence of each particle very smoothly (two continuous
derivatives everywhere) in space. For example the “delta-
function” density of each two-dimensional particle and of
its properties (such as velocity, energy, and pressure tensor)
are likewise distributed smoothly within a circle of radius h.
The weight function is maximum at the particle’s location
and vanishes on and beyond its bounding circle. The cor-
responding density distribution in the differential neighbor-
hood rdrdθ of a particle is

ρ(r, θ) = (5/πh2)(1− 6z2 + 8z3 − 3z4) ; z ≡ r/h .

A reasonable choice of the range h of Lucy’s weight function
for most atomistic simulations is 2 or 3 particle diameters.
We have chosen 2 throughout the present work.

The normalization prefactor in one dimension, (5/4h)
for −h < dx < +h, is replaced by (5/πh2) for normaliza-
tion within a circular area with πr2 < πh2:∫ h

0

2πrdr(5/πh2)(1− 6z2 + 8z3 − 3z4) ≡ 1

where again z ≡ (r/h) .

Lucy’s smooth weight function is convenient for comparing
the results of atomistic simulations to the predictions of con-
tinuum mechanics, as we shall presently demonstrate, when
seeking interfaces identifying the liquid phase.

A simple one-dimensional example illustrates the use-
fulness and power of smooth-particle weighting. Consider
the one-dimensional lattice of points at the integers so
that the coarse-grained “density of points” is unity. Using
Lucy’s smooth-particle weighting function normalized for
one-dimensional distributions,

w(|dx| < h) = (5/4h)(1− 6z2 + 8z3 − 3z4)

where z ≡ |dx|/h ,

gives for the density at each integer point 1.0156 for
a “smoothing length” h = 2 and 1.0031 for smoothing
length h = 3. The local density in a one-dimensional sys-
tem at the grid point xg is the summed-up contribution from
nearby particles {xi} within a distance h of the grid point:

ρ(xg) ≡
∑
i

w(|xi − xg|) .

Applying this same definition, in between the integers, at
the various midpoints ±(1/2), ±(3/2), . . . , the smoothed
densities are 0.9863 and 0.9973 respectively for smoothing
lengths of 2 and 3.

Likewise, carrying out a one-dimensional average over
x for a few hundred horizontal strips the y-dependent pres-
sure and density, {〈P (y)〉}, {〈ρ(y)〉} can be computed with

one-dimensional weights including all particles within a ver-
tical separation |dy| < h of the gridpoint in question, where
h is the range of the Lucy function. The spatial and tempo-

Fig. 8. Time-averaged density contours from 0.05 to 0.85 for
640 Lennard-Jones particles at T = 0.5 and overall density 0.4.
The quartic square boundaries are located at ±20. Space and time
averages, over the horizontal x coordinate in space, and using the
final two million timesteps in a four million timestep run, in time,
provide the 〈P 〉(〈ρ〉) profile giving the structure of the meniscus

perpendicular to that interface

Fig. 9. Time-averaged density contours from 0.05 to 0.85 for 640
Lennard-Jones particles at T = 0.5 with overall density 0.4.
The circular boundary potential begins at r =

√
(1600/π) =

= 22.568. Averages over the horizontal x coordinate using two
million timesteps provide the 〈P 〉(〈ρ〉) profile giving the structure

of the meniscus
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ral averaging process involves three distinct steps: At each
timestep (1) Compute individual particle properties such as
ρi and Pi using two-dimensional smoothing; (2) Convert the
particle data into spatial averages for a y grid using one-
dimensional smoothing; (3) Combine the spatial values by
averaging over as many as millions of timesteps.

Figs. 8 and 9 show time-averaged pressure and density
profiles for the two boundary conditions, square and circu-
lar. In both cases wildly fluctuating snapshot configurations,
time-averaged over the last half of a two-million timestep
simulation, provide a smooth meniscus with a width of just
a few particle diameters. The pressure and density, averaged
over both time and x indicate a horizontal isotherm rather
than a van der Waals’ loop.

Fig. 10. Time-averaged pressure as a function of time-averaged
density using the last half of two million Runge-Kutta timesteps for
640 Lennard-Jones particles in a 40×40 quartic box. Five separate
curves are shown corresponding to field strengths 0.01, 0.02, 0.03,
0.04, and 0.05. The lower portions of the five curves correspond
to the meniscus separating liquid from gas. The good agreement
indicates very little dependence of the pressure-density correlation
upon field strength. The simulation with g = 0.01 used the last half

of a four-million-timestep run

Fig. 10 compares the structures of the meniscus, pres-
sure versus density, for a series of five values of the grav-
itational field from 0.01 to 0.05. The upper segment of
each of the five traces corresponds to the high-density high-
pressure region near the bottom of the container, which sup-
ports the entire weight of the 640 Lennard-Jones particles.
The low-density low-pressure region near the bottom of the
plot (where the five traces agree) describes the meniscus atop
most of the fluid. The good agreement of all five indicates
that the present introduction of gravity into critical-region

simulations provides accurate unambiguous estimates of the
subcritical isotherms without the need for free energies or
a Maxwell construction. Contour plots, as in Figs. 8 and
9 are probably the best diagnostic tool for the meniscus as
the density near the centre of the container can be assessed
and, when time-averaged, is guaranteed to obey the barome-
ter formula, dP (y)/dy = −ρ(y)g.

XI. TWO FINITE-RANGE POLYNOMIAL
PAIR-POTENTIAL FAMILIES

In our exploratory work here we have emphasized
Lennard-Jones’ 12/6 pair potential because its thermody-
namic properties are familiar and well investigated [18, 19].
Lennard-Jones’ potential is the most thoroughly studied of
the “realistic” potentials. We have sought to learn more by
introducing two very different families of finite-ranged pair
potentials. With a triangular lattice the longer-ranged fam-
ily {φLm(r < 2)}, includes three shells of neighbors,
18 in all, at zero stress, while the short-ranged potentials,
{φSm(r <

√
2)} include only the six nearest neighbors:

φLm = (2− r)2m − 2(2− r)m for r < 2

φSm = (2− r2)2m − 2(2− r2)m for r <
√

2 .

See Fig. 11 for six example plots of these relatively short-
ranged potentials. For all of them we will continue to
adopt “reduced units” based on a well-depth of unity at

Fig. 11. Two families of pair potentials, φL
m = (2− r)2m − 2(2 +

−r)m and φS
m = (2 − r2)2m − 2(2 − r2)m. In the stress-free

triangular lattice the short-ranged potentials, {φS
m(r <

√
2)}, have

a range
√

2 so that each particle only interacts with 6 nearest neigh-
bors. In the longer-ranged case, with φL

m(r < 2), each particle in-
teracts with 3 shells of 6 neighbors each



16 K.P. Travis, Wm.G. Hoover, C.G. Hoover, A.B. Hass

the particle-pair separation of unity. All the potentials have
smooth minima of −1 at r = 1. In the Lennard-Jones
case we entirely avoid cutoff corrections by including all
N(N−1)/2 pairwise interactions. The finite-ranged polyno-
mial potentials, with order-N interactions, are much faster to
analyze. In our exploratory molecular dynamics simulations
we enclosed a few hundred particles in a box with quartic-
potential very smooth boundaries and included a weak grav-
itational field. Our plan was to observe phase boundaries di-
rectly.

The polynomial potentials require simulation times of or-
der N rather than N2 for the force calculations. Figs. 11 and
12 show six of the specimen potentials along with eight of
their static-lattice “cold curves”, calculated for perfect tri-
angular lattices. For the range of densities shown all the
shorter-ranged potentials, {φSm}, have their minima at r = 1
with cold curve minima at a density

√
(4/3) = 1.1547 and

a binding energy e(ρ = 1.1547) = −3. Because the longer-
ranged potentials extend to a separation of 2 their lattices are
slightly compressed from the “close-packed” density 1.1547.
The binding energy is accordingly increased. See Fig. 12.

Fig. 12. Cold curves for the triangular lattice with eight poten-
tials of the two types shown in Fig. 11. The stress-free square lat-
tices are mechanically unstable to shear. The energies with wider
bowls are drawn with the wider lines. Those bowls, extending
to r = 2, include second and third neighbors at zero stress so
that the coresponding densities exceed the narrower-bowl value√

(4/3) = 1.1547

XII. GAS LIQUID COEXISTENCE
AND THE MAYERS’ “DERBY HAT”

Fig. 13 shows our estimates for the gas-liquid coexis-
tence curves for two of the short-ranged potentials. These co-
existence curves were obtained using an improved version of

the “liquid-ribbon” method described by Farid Abraham in
1980, using 256 particles. Here we use conventional molec-
ular dynamics (N = 3600, dt = 0.001, t = 2000), with
a cell, elongated horizontally and with periodic boundaries
at its top and bottom. Smooth particle averaging with Leon
Lucy’s weight function then provides density and pressure
profiles. The initial square-lattice configuration is quenched
into the mechanically unstable region of the phase diagram
using Nosé-Hoover dynamics. The system rapidly separates
into vapour and liquid phases. The density profile is sym-
metrized prior to recording the values of the flat regions of
the gas and liquid phases’ densities. The final configuration
of each simulation becomes the starting point for the next-
lower temperature simulation. The full set of eight coexist-
ing density pairs is then correlated with their temperatures,
as shown in Fig. 13.

The coexistence data are then fitted to the scaling laws
shown in the figure. For the variation of the density with tem-
perature, ∆ρ(T ), the exponents 1/7.5 and 1/7.9 resulted for
the 6/3 and 8/4 long-ranged (r ≤ 2) potentials, φL3 and
φL4 . Because these exponents approximate Onsager’s 1/8,
found analytically for the two-dimensional Ising model, we
repeated the scaling law fits using 1/8 for the exponent.

The “Law of Rectilinear Diameters” (the mean of gas
and liquid densities varies linearly with temperature) was ad-
equate for the 6/3 potential while a quadratic fit was needed
in the righthand plot of the 8/4 data. These choices enabled
the vapour (red in Fig. 13) and liquid (black in that figure)
densities to be drawn in as continuous curves with critical
temperatures of 0.685 and 0.503. We abandoned an effort
to estimate the critical region for the 10/5 potential, φL5 .
The relatively weaker binding energy indicated that weeks
of computer time might be required for an accurate assess-
ment of that potential’s critical point.

In 1940, as described in Chapter 14 of their Statistical
Mechanics text [20], Joseph and Maria Mayer argued from
the standpoint of their statistical-mechanical cluster theory
that there is a highly-complex “Derby-Hat” critical region
atop the coexistence curve, as is shown in Fig. 14. The red
“Hat” region was thought to sit atop the two-phase region in
which gas and liquid are separated by a meniscus. If this con-
struction were correct, as has been recently championed by
Woodcock and Khmelinskii [21], the meniscus should sud-
denly vanish at the same temperature but at a whole range
of different densities, different by as much as ten percent ac-
cording to the Mayers’ estimate in three space dimensions.
Here the main difference seen above and below the appar-
ent critical temperature of 0.685 for the φL3 potential is the
concentration of large clusters in the vapour phase, visible in
Fig. 15.

These polynomial potentials avoid cutoff corrections.
We briefly considered the usefulness of energy comparisons
with the square lattice, but preliminary calculations revealed
that lattice unstable to shears parallel to either the x or the
y direction. By contrast, as is consistent with hexagonal sym-
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Fig. 13. Coexisting densities for φL
3 and φL

4 . Both cases closely reproduce Onsager’s two-dimensional Ising model power law dependence
of the density difference, ρliquid− ρgas on Tc−T . The Mayers’ 1940 “Derby Hat” idea for the region above the meniscus’ disappearence

appears in Fig. 14. Each of the data shown here was generated with a million timesteps using dt = 0.001

Fig. 14. The Mayers’ 1940 idea, now obsolete, that a meniscus-
free region of infinite compressibility (shaped like a “Derby Hat”)
would be found atop the two-phase coexistence region, is illustrated
here in red. Our simulations carried out above the critical temper-
ature and with a small gravitational field show the presence of rel-
atively large clusters of particles in the low-density upper portions

of our containers, as shown in Fig. 15

metry, the triangular lattice has an isotropic shear modulus,
a convenient property for modeling atomistic results with
isotropic continuum mechanics.

Either type of potential choice, (2− r)12 − 2(2− r)6 or
(2−r2)6−2(2−r2)3, can provide the same curvature at the
potential minimum of unity φ′′ = 72 as does Lennard-Jones’
potential. Fig. 16 shows pressure-density isotherms for all
the potentials considered here. The short-ranged potentials’
isotherms have a positive compressibility (positive slope in
the figure) while Lennard-Jones’ and the longer-ranged po-
tentials have negative regions corresponding to the presence
of van der Waals’ loops and gas-liquid coexistence.

XIII. TIME-AVERAGED THERMOSTATED
MOLECULAR DYNAMICS

Fig. 15 showed snapshots, equally-spaced in time and
in temperature, of 400 longer-ranged φL3 particles in a grav-
itational field. The temperature increased stairstep-fashion
from 0.61 in the lower left corner to 0.76 at the upper right.
There are eight snapshots below the critical temperature and
eight above. Although the fluctuations are large it is clear
that the cooler subcritical configurations are qualitatively
closer to a gas-liquid interface than the more diffuse super-
critical configurations to the right. The fluctuations evident
in the snapshots can largely be removed by time averaging.
Figs. 17 and 18 show density and pressure profiles with one
million timesteps for each temperature. The eight subcriti-
cal isotherms show a relatively sharp transition to a lower
density gas-phase plateau. Above the critical temperature
the density follows the barometer formula with a decreasing
density and pressure with altitude. The gravitational field or-
ganizes the fluid without noticeably perturbing the structure
of the meniscus.

XIV. THE VIRIAL SERIES, DIFFUSION,
AND A MOVIE

In working to understand “What is Liquid” we found
that gravity and time averaging were useful computational
tools. Gravity makes it possible to see an entire isotherm
by stabilizing a stationary equilibrium pressure gradient,
(∂P/∂y)T = −ρ(y)g. Time averaging makes it possible
to reduce, and nearly to eliminate, the density and pressure
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Fig. 15. Sixteen snapshots of 400 particles with φL
3 (r < 2) controlled by a gravitational field g = 0.01. The periodic width of the system

is
√

800. Quartic repulsive potentials, (1/4)dy4, apply beyond the horizontal bounds |y| =
√

200. The spacing between the snapshots
is 20 000 timesteps, corresponding to an elapsed time of 100. The lefthand columns, starting at lower left, correspond to subcritical
temperatures of 0.61 to 0.68 and the righthand columns to supercritical temperatures from 0.69 to 0.76, finishing at the upper right.

The laptop time for all these simulations is a few minutes

fluctuations which would otherwise obscure the structure of
the liquid-gas meniscus. Here we consider briefly the utility
of three additional tools, the Mayers’ virial series, local val-
ues of the short-time anisotropic diffusion, and movies of the
meniscus’ evolution with relatively strong fields.

XIV. 1. The Mayers’ Virial Series
In principle the Mayers’ recipe for the virial coefficients

{Bn(T )} provides an exact route to the equation of state by
formulating the pressure as a series in the density,

PV/NkT = 1 +B2ρ+B3ρ
2 +B4ρ

3 +B5ρ
4 + ...

The efficient calculation of the higher coefficients in the
Mayers’ series has been greatly improved by Richard Wheat-
ley’s work [22]. For hard spheres the fluid equation of state
is well known from computer experiments. Wheatley’s 12-
term series agrees with these experiments within a fraction
of a percent, all the way to freezing at (2/3) the close-packed
density. Given that success one might well expect that anal-
ogous calculations for our polynomial potentials would be
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Fig. 16. T = 0.5 isotherms for Lennard-Jones’ potential and two families of polynomial potentials. The longer-ranged potentials,
{φL

m(r < 2) = (2− r)2m − 2(2− r)m}, with m = 3, 4, 5, and 6, appear to exhibit liquid phases while the nearest-neighbor shorter-
ranged potentials, {φL

m(r2 < 2) = (2− r2)2m − 2(2− r2)m}, appear to go directly from the solid to the gas phase on heating, with no
intermediate liquid phase. Approximately 500 simulations were carried out for these isotherms, all with dt = 0.001, one million timesteps,

and Nosé-Hoover control of the temperature using ζ̇ = 10[(Kt/K0)− 1]. These data have been smoothed slightly for clarity

Fig. 17. 16 density profiles, subcritical in blue and supercritical in red, for 16 temperatures ranging from 0.61 to 0.76. The relatively sharp
meniscus broadens noticeably at the critical temperature. Each profile is the last-half average of two million Runge-Kutta timesteps with
dt = 0.005. N = 400 in a square container, L =

√
800, periodic at the sides, quartic at the bottom and top, with a gravitational field

strength of 0.01. Temperature increases at the left and decreases at the right

useful near the critical point. On the other hand, for φL3 at
the critical point, the unit-distance maximum of the n-body
Mayer-function integrands,∏

fij(rij = 1) ≡
∏

[e1/0.685 − 1] ' 3.3n
2/3 ,

for large n, suggests convergence difficulties for the series.
Numerical investigation of the first five terms for φL3 (r < 2)
confirms this problem. Monte Carlo evaluation of the Mayer
integrals with 1011 configurations each gives the following
results at the critical temperature, Tc = 0.685:

{B2 = −4.25589 ; B3 = −0.176 ; B4 = 36.7 ; B5 = 58} .

Qualitatively the numbers are even less promising for
φL4 (r < 2) and for Lennard-Jones’ 12/6 potential. Evidently

the virial series will not help our understanding. Even with
the help of the diminishing powers of the critical density,
0.560n−1, it is clear that the series is poorly behaved. For φL3
at the critical point we find PV/NkT = 1− 2.38− 0.06 +
+6.45 + 6 ... , which looks quite hopeless. We conclude that
the virial series is not a useful tool in the vicinity of the crit-
ical point.

XIV. 2. Short-Time Diffusion
and the Gas-Liquid Transition

As the gas and liquid phases, with their different den-
sities, have correspondingly different diffusion coefficients
it is worth investigating the anisotropicity of the diffu-
sion induced by the gravitational field’s pressure gradient.
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Fig. 18. 16 pressure profiles, subcritical in blue and supercritical in red, for 16 temperatures ranging from 0.61 to 0.76. The dip in the
subcritical plots corresponds to the surface tension’s negative contribution to the mean pressure, P = (Pxx + Pyy)/2. These data, just as
those in Fig. 17 required a bit under one day of laptop time. N = 400 in a square container, L =

√
800, periodic at the sides, quartic at

the bottom and top, with a gravitational field strength of 0.01. Temperature increases at the left and decreases at the right

Away from the meniscus we expect that the averaged mean-
squared displacement will be typical of the field-free dis-
placements,

〈[x(t)− x(0)]2〉 = 〈dx2〉 ' 〈[y(t)− y(0)]2〉 = 〈dy2〉 .

In the dilute gas limit there is an apparent difference.
At time t and in the absence of collisions, the mean-squared
x displacement is given by the Maxwell-Boltzmann’s mean
squared value, (kT/m)t2 while the mean-squared y coordi-
nate, 〈[ẏ(0)t+(g/2)t2]2〉 = (kT/m)t2+(g2/4)t4 is bigger.
In the dense solid, on the other hand, both displacements are
tiny.

A more formal demonstration of the equilibrium distri-
bution function in a field follows from the Boltzmann equa-
tion for the probability density f(t, y, p):

(∂f/∂t) + py(∂f/∂y)− g(∂f/∂py) = collision term .

At low density the two-body collision term can be ignored.
In the stationary state (∂f/∂t) vanishes. The other two terms
cancel when f includes e−p

2/mkT e−mgy/kT . All that re-
mains is the solution of a particle in the external field,
y(t)− y(0) = py(0)t− (1/2)gt2.

Consider two equilibrium systems under the influence
of gravitational fields of 0.01 and 0.10, illustrated by the
late-time snapshots of Fig. 19. Notice particularly the dif-
ference in the vapour pressures. For two similar systems, but
with quartic boundaries, Fig. 20 shows the dependence of
the diffusive mean-squared displacement on the sampling
time ∆. These systems are held at their critical tempera-
ture, T = 0.685 subject to the same two field strengths,

g = 0.01 and 0.10. The smooth-particle averages of dx2

and dy2 with vertical quartic boundaries are based on 300
grid points with a smoothing length h = 2. The y coordinate
associated with these displacement pairs is the mean value,
(1/2)[y(−∆t/2)+y(+∆t/2)]. In Fig. 20 the analysis of par-
ticle displacements as a function of the vertical coordinate is
carried out with a smoothing length h = 2 in a square sys-

Fig. 19. Typical isothermal equilibrium snapshots of 400 φL
3 par-

ticles at the critical temperature 0.685 with gravitational field
strengths of 0.01 (at the left) and 0.10 (at the right). Periodic bound-
aries fix the system width at 20. A quartic boundary at the base

supports the weight of the system
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tem, L =
√

800. The corresponding one-dimensional Lucy-
function is

w(z) = (5/4hLx)(1− 6z2 + 8z3 − 3z4)

z = |yi − yg|/2 for z < 1 .

Lucy’s function is used to calculate the ratios∑
i wigdx

2/
∑

i wig and
∑

i wigdy
2/

∑
i wig . Here wig ≡

≡ w(|yi− ygrid|). It is particularly interesting that the short-
time vertical displacement at the larger field is significantly
greater than the horizontal, as predicted by simple kinetic

Fig. 20. The mean-squared distances in the horizontal and vertical directions, 〈x2〉 and 〈y2〉 traveled in times ∆ of 1, 2, and 4 are plotted as
functions of the midpoint y coordinate. The boundary conditions are quartic, in a square box of sidelength

√
800. At the left, corresponding

to the weak field g = 0.01 there is no significant difference between the mean-squared horizontal and vertical displacements. At the right
there is a significant difference, with the vertical displacements, shown in blue, larger, as is consistent with collisionless kinetic theory.

At the bottom of the container the easier x motion can be seen clearly at the longest time, ∆ = 4

Fig. 21. Two snapshots taken from a computer-generated movie illustrating “spinodal decomposition”, at the left (t = 48), followed by
thermal equilibration under the influence of a “strong” gravitational field, g = 0.20 at the right (t = 154). Initially the 10 000 particles
in a square box of area 20 000 were arranged in an (unstable) square lattice with the upper 5000 colored red and the lower 5000 black.

The pairwise-additive interactions come from the φL
3 potential
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theory. An exploration of the details would make a reward-
ing research project. The state dependence of the short-time
diffusion is evidently a useful diagnostic tool.

XIV. 3. Movies of Isothermal Dynamics
in a Gravitational Field

In the early days of molecular dynamics computer-
generated movies were staples at scientific meetings [23].
They showed not only the familiar motion of a gas filling
a container, but also the details of shear and heat flows. These
movies aided the intuition required to understand atom-
istic dynamics from the standpoint of continuum mechan-
ics. We expect now that such movies will help lead to un-
derstanding the inhomogeneous correlations due to the gra-
dients seen in drops, shockwaves, and gravitational flows.
Movies of two-dimensional systems with hundreds or thou-
sands of particles provide valuable insights while requiring
very little computer time. A sample movie prepared for the
readers of the arXiv and “Computational Methods in Sci-
ence and Technology”, can be found at the website1. Fig. 21,
taken from a similar movie, shows at the left, the early “spin-
odal” stage of a 10 000-particle φL3 system in a quartic box
with L =

√
20 000. The gravitational field, in Fig. 21 a rel-

atively large 0.2, supports only a tiny vapour pressure on
reaching the equilibrium state shown at the right.

XV. CONCLUDING REMARKS

We have explored the critical region for two varieties of
polynomial pair potentials, finding that the shorter-ranged
family can sublime directly from the solid phase to the gas,
without the intervention of a liquid. The monotone nature
of the isotherms of the shorter-ranged potentials, displayed
in Fig. 15 is consistent with this finding. The longer-ranged
family, with second and third neighbor interactions, form
a liquid phase with a well-defined but fluctuating menis-
cus. Time-averaging the fluctuating profiles provides stable
smooth estimates of the meniscus region separating the liq-
uid and gas.

With the longer-ranged potential (2−r)6−2(2−r)3 a vi-
sual inspection of the heated liquid in the presence of a weak
field reveals a complexity outside the normal range of ther-
modynamics. Clusters of particles abound, from dimers and
trimers up to percolating clusters which stretch all the way
across the simulation. In view of these fluctuating features
time-averaging is necessarily required to visualize and stabi-
lize a liquid-gas interface. And time averaging is not enough.
In principle field-free time averaging would only produce
a constant mean density everywhere!

In order to “see” the definite boundary between liquid
and gas we have considered an innovative version of molec-
ular dynamics, with a containerized region and a localizing

gravitational field. This combination, when time-averaged,
provides density and pressure profiles in which the phases
are separated by a meniscus. For small field strengths these
profiles resemble the Maxwell construction tie-line linking
the two fluid phases below the critical point.

This same technique is equally applicable using Monte
Carlo simulations in the canonical ensemble. The presence
of gravity provides a definite time-averaged interface, pro-
viding a distinction between the gas and liquid and address-
ing the “What is Liquid” directly, through Hannay’s inter-
face. The complexities due to fluctuations moderated by sur-
face tension can be overcome with gravity. It is rewarding
to see the subcritical dip in the pressure (Fig. 18) disap-
pear at the estimated critical temperature as calculated inde-
pendently with an improved version of Abraham’s “liquid-
ribbon” technique. It is particularly interesting to see that at-
tractions beyond the first neighbors are needed for the liquid
phase.

Jürgen Schnack, in commenting on an earlier draft of
this work, pointed out his analogous work (but with a har-
monic container) on the molecular dynamics of nuclear mat-
ter. In particular that study [24] estimated the critical tem-
perature for hot oxygen at 1011 Kelvins. We also thank John
Ramshaw for his cogent remarks on the applicability of hard-
sphere perturbation theory to liquid-gas equilibria.

This work achieved two goals. First, we have introduced
a useful simulation technique providing a time-averaged de-
scription of the liquid-gas meniscus, curved or flat, depend-
ing upon the boundary conditions, separating the two phases.
Second, we have introduced two families of pair poten-
tials which are relatively short-ranged, thereby avoiding the
complications associated with cutoffs. These models have
shown that liquids are stabilized by interactions beyond near-
est neighbors. Our simulations with gravity generate density
gradients spanning a wide range of densities, including the
critical density. The method developed here is relatively in-
sensitive to the number of particles chosen and the overall
volume of the simulation container. No doubt it will sug-
gest elaborations in conjunction with other statationary pro-
cesses, both at, and away from, equilibrium.
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