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Abstract: The structure of a two-dimensional film formed by strongly adsorbed polymer chains was studied by means of
Monte Carlo simulations. We investigated the percolation in systems consisting of flexible polymer chains. A coarse-grained
polymer chains representation was assumed and polymer chains were represented by linear sequences of lattice beads.
The positions of these beads were restricted to vertices of a two-dimensional square lattice. Properties of the model system
were determined by means of Monte Carlo simulations with a refined Verdier-Stockmayer sampling algorithm. Percolation
thresholds macromolecules were determined. The methodology concerning the determination of the percolation thresholds
for an infinite chain system was discussed. The influence of the chain length and the temperature on the percolation was
discussed. It was shown that the introduction of long-range interactions changes the behavior of the percolation threshold
dramatically. The percolation threshold initially decreases with the chain length while for longer ones it is stable.
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I. INTRODUCTION

Percolation is a phenomenon in which a cluster formed
by given objects becomes infinite, which means that in real
systems it spans from one border of the system to another
[1]. One of theoretical procedures is to determine the perco-
lation threshold in a given system, i.e., the minimum con-
centration of objects at which the percolation takes place.
The percolation theory has a lot of applications, especially in
disordered systems and porous media. Computer simulation
of this process can usually be realized by Random Sequen-
tial Adsorption (RSA) [2–4] and Monte Carlo simulations
[5, 6]. The lattice approximation is commonly used for the
consideration of the RSA percolation in many systems in or-
der to suppress the degree of freedom and for computational
purposes. The most popular objects studied using the RSA
method up to date were stiff rods (needles) [7–9]. The per-

colation and jamming (the maximum coverage of surface)
thresholds were determined for such systems. Systems con-
taining other elongated objects (ellipsoids, rectangles) were
also studied and shown that the aspect ratio was a crucial pa-
rameter that determined the percolation threshold [10–12].
The behavior of polymer chains which can change their con-
formation size and shape instantaneously was found quite
different from stiff objects. The process of the adsorption
of stiff and flexible macromolecules on surfaces was also
realized using the RSA procedure [6, 13–21]. Studies of
mixtures of short extended objects (oligomers) on a trian-
gular lattice by means of the RSA method were also recently
performed by the RSA method [15, 16]. A different cate-
gory of models of adsorption, i.e., three-dimensional poly-
mer chains was the subject of many studies [22] employing
computer simulations [23, 24] and theoretical considerations
[25–27]. Detailed studies on the universality of the percola-
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tion process and the influence of the lattice representation on
it has been performed recently [5, 16, 19]. Mixtures of small
objects (oligomers) of a different shape were also studied
by means of the RSA method [15] while mixtures of stiff
rods and flexible chains appeared to be tractable by a theory
(a connectedness Ornstein-Zernike formalism) [28].

An alternative method for studying the percolation in
macromolecular systems was recently proposed using the
cooperative motion algorithm [29, 30]. The influence of
the presence of explicit solvent molecules, analysis of the
clusters formed by macromolecules and confirmation of
the universal critical behavior of these systems were the main
results discussed in these works [5]. These studies concerned
athermal systems and up to date the influence of the tempera-
ture on the percolation was the subject of a single publication
[13]. In this paper we present some initial results of stud-
ies of the percolation in two-dimensional systems consisting
of flexible linear polymers. Chains were represented as se-
quences of identical beads and positions of these beads were
restricted to vertices of a square lattice. A simple square-well
polymer-polymer potential was introduced into this model.
The main question addressed was the influence of the tem-
perature on the percolation in such systems.

II. THE MODEL AND THE METHOD

Due to limitations of the RSA method applied to sys-
tems of flexible chains we decided to study the percolation
of macromolecules by means of the dynamic Monte Carlo
simulations [6]. We used a coarse-grained representation of
polymer chains (with all atomic details suppressed and with
beads representing several chemical mers) and a lattice ap-
proximation. The presented results concern simulations on
a two-dimensional square lattice with the coordination num-
ber equal to 4 and with the bond length equal to 1. Each chain
in the system consisted of N beads (monodisperse system)
and the number of chains nwas also constant during the sim-
ulation.

Each lattice site is allowed to be occupied by one chain
bead, which corresponds to shot-range repulsions and it
means that the chains could not cross each other. Long-
distance interactions were assumed in a form of a contact
square-well potential of a pair of polymer beads:

V (rij) =

 ∞ for rij < 1 ,
ε for rij = 1 ,
0 for rij > 1 ,

(1)

where rij is a distance between ith and jth beads. The re-
duced temperature T is proportional to 1/ε. No local poten-
tial was introduced and therefore chains were fully flexible.
Periodic boundary conditions were imposed in both direc-
tions. The problem concerning the finite size of the Monte
Carlo box in our studies will be discussed below in the next
Section.

In order to generate a series of independent configura-
tions of the system we used Monte Carlo simulations with
an algorithm based on local and non-local changes of chain’s
conformation. The set of these local moves consisted of
1-bead motion, 2-bead motion, 1-bead end modification and
2-bead end modifications [31]. Additionally the algorithm
was enriched with pivot motions, where fragments of chain
having random length are randomly rotated, and the repta-
tion motion. These two last micromodifications are essen-
tial for the ergodicity of the process and make the relaxation
of the system considerably faster [32]. A polymer bead at-
tempted move and was accepted/rejected due to geometrical
constraints and the Metropolis criterion. A Monte Carlo cy-
cle was defined as one attempt of each motion applied in
average to one bead. An initial polymer’s conformation was
constructed in a process of the simultaneous growing and the
equilibration procedure: a system containing n chains, each
consisting ofN beads, was eventually built. For each system
under consideration 20–25 independent Monte Carlo simu-
lation runs were performed. Each simulation run consisted of
108–1010 cycles and at the start of the each simulation run
the equilibration run was performed, which lasted 106–109

cycles. The criterion of the equilibration of the system was
the stability of some time-mean parameters of the system,
such as the end-to-end distance and the radius of gyration.
When neighboring chains form a continuous path from one
system edge to the opposite one, this is called percolation.
In order to recognize the moment of percolation a Newman-
Ziff algorithm based on the union-find procedure was ap-
plied [33].

III. RESULTS AND DISCUSSION

Simulations were performed for a chain length N var-
ied between 3, 5, 10, 25, 50, 75 and 100. In order to de-
termine the influence of the size of the system on the
values of the percolation threshold simulations were per-
formed in the Monte Carlo box with various edges: L =
= 50, 100, 200, 1000 and 2000 for each set of parametersN ,
n and T . The polymer concentration was defined as a frac-
tion of lattice sites occupied by chains, i.e., the ratio of the
number of polymer beads to the total number of sites in
the system: ϕ = nN/L2. The structure of a strongly ad-
sorbed polymer layer was frequently the subject of theoreti-
cal and simulation studies [22] and is well-known, which is
why we focus on the percolation problem only.

Percolation probability was determined as the ratio of the
number of configurations where the percolation occurred to
the total number of generated configurations. Fig. 1 presents
the percolation probability P as a function of the polymer
density ϕ for chain N = 10 at some different temperatures.
All P (ϕ) curves are typical, i.e., S-shaped, and the decrease
of the temperature shifts the curve towards lower polymer
concentrations. The size of short chains weakly depends on
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Fig. 1. The percolation probability P as a function of the polymer
concentration ϕ. The case of the Monte Carlo box L = 1000 and

chain length N = 10. The temperatures are given in the inset

the temperature and thus all curves exhibit similar slope
contrary to the similar curves for athermal chains where
lengths were varied [5]. Qualitatively the same behavior of
the percolation probabilities was found for other athermal
two-dimensional polymer chains: short chains on a square
lattice [16, 17, 34], long linear chains with explicit solvent
molecules on a triangular lattice [5] and for off-lattice hard
ellipsoids [10]. This behavior of the percolation probability
is similar to that found for stiff elongated objects (needles)
in the RSA process [8, 9, 14].

The percolation threshold can be determined from an
S-shaped probability curve as its inflection point. In order
to calculate the value of the thresholds for an infinitely large
system the following procedure is proposed. The inflection
point on a P (ϕ) curve is determined using the following fit-
ting [16, 34]:

P (ϕ) = 1−
[
1 + exp

(
ϕ− cp
a

)]−1

, (2)

where a is a constant that determines the slope of the curve;
when a → 0 the curve reduces to the step function (which
should be observed for an infinitely long chains). In the next
step the finite-size scaling analysis was made. The calcu-
lated percolation threshold was extrapolated to the thermo-
dynamic limit was done by fitting to the scaling relation:

|cp(L)− cp(∞)| ∼ L−1/ν , (3)

where cp(L) and cp(∞) are percolation thresholds for the
Monte Carlo box L × L and for an infinite system, respec-
tively. The critical exponent ν was assumed to be equal to

Fig. 2. The percolation threshold cp as a function of the chain
length N . The temperatures are given in the inset

4/3 as elucidated from theoretical considerations [1] and
conformed in simulations of polymer systems [5].

The changes of the percolation threshold with chain
length are presented in Fig. 2. One can observe that the
threshold of athermal chains (no attractive interactions) de-
creases with the increase of the length of the macromolecule.
A formula describing the influence of the chain length on the
percolation threshold was recently proposed [19]

cp = c∗p + Ω exp
(
− κ

N

)
, (4)

where c∗p, Ω and κ are fitting parameters and c∗p corresponds
to the percolation threshold for an infinitely long chain.
The calculations based on their data gave c∗p = 0.461±0.001
but it must be remembered that they studied very short chains
only (N ≤ 15). Fitting of our athermal data gives a similar
result for short chains (c∗p = 0.447) while quite a different
result for chains in the entire range of the chain lengths un-
der consideration (c∗p = 0.261). Thus, the parameters of the
above equation depend on the chain length and the formula
is not valid and should be rejected. It must be noticed that c∗p
for athermal chains does not scale as N−a but this relation
is apparently stronger. The same results were recently ob-
tained by means of the RSA method [16] while percolation
thresholds of short self-avoiding walks scales asN−0.1 [16].

The behavior of chains with the attractive potential pre-
sented in Fig. 2 is quite different. For short chains the perco-
lation threshold decreases with the chain length in a similar
way as athermal chains do. The decreases of the temperature
(or the increases of the strength of attraction) shifts this part
of the cp(N) curve lower. This behavior can be explained by
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Fig. 3. The local density in a polymer chain and in the percolation
cluster as functions of the temperature. The case of chain N = 50.
The values of local density a polymer chain and in the percolation

cluster are marked in red and black, respectively

the fact that the size of chains decreases during the anneal-
ing and the number smaller (more compact and more dense)
chains required to form a large cluster spanning the space
has to be higher. For longer chains the percolation thresh-
old becomes almost constant. The crossover to this regime
depends strongly on the temperature: the lower the tempera-
ture is, the shorter an initial regime is where the threshold de-
creases with N . The plateau visible for linger chains means
that the formation of clusters is rather governed by the tem-
perature than by the polymer concentration: at lower temper-
ature there are again more compact objects. The influence
of the temperature on the percolation threshold showed by
Kondrat [13] and concerned systems of semi-flexible chains
was even more complicated: thresholds exhibit a minimum
for certain temperatures. This study suggests that a certain
shape of a flexible chain exists where the percolation thresh-
old achieves its minimum.

Fig. 3 presents the changes of the local polymer den-
sity in both chains and percolation clusters. The local den-
sities were determined near the percolation thresholds. They
were calculated as N/

〈
S2
〉

for chains and Nper/
〈
S2
〉
per

for clusters, respectively. Nper is the number of polymer
beads in the percolation cluster,

〈
S2
〉

is the mean squared
radius of gyration of a polymer chain and

〈
S2
〉
per

is the
mean squared radius of gyration calculated for the perco-
lation cluster. One can observe that in spite of the fact that
for attractive chains the percolation thresholds exhibit two
distinguishable regimes but the dependencies of the chain
length on local both densities do not. Both densities in-
crease during the annealing although density inside a chain

Fig. 4. The mean-squared radius of gyration
〈
S2

〉
as a function of

the polymer density ϕ. The temperatures are given in the inset

increases slightly faster. The sampling algorithm used in our
simulations is not efficient at temperatures T < 1 and thus
we cannot see the stabilization of the density. Additional
information can be obtained by the referencing changes
of the percolation threshold to changes in size of macro-
molecules. In Fig. 4 we show changes of an average chain
size (represented as usual by the mean-squared radius of
gyration) as a function of polymer concentration for some
temperatures. In the athermal system the size of chains de-
creases with the polymer concentration as ϕ−1, which is
expected based on theoretical considerations [35]. One can
observe that systems with polymer-polymer attractive inter-
action behave differently than the athermal system as the
size of chains increases here with the polymer concentration.
The stronger the polymer-polymer attraction, the smaller the
size of chains and the size of chains increases with the poly-
mer density. No rapid changes of size at densities corre-
sponding to dramatic changes of the percolation thresholds
were found. The sequence of the chain sizes is found to be
inversely proportional to the percolation threshold. Fluctua-
tions of

〈
S2
〉

near ϕ ≈ 0.3 can be attributed to a crossover
where intrachain interactions prevails inter-chain interac-
tions but they require further studies.

Figs. 5(a)–7(a) show examples of configurations of the
systems studied. These snapshots concern polymer chains of
an intermediate length (N = 50) near the percolation thresh-
old for three different temperatures: for athermal system (an
infinite temperature), high temperature and low temperature.
Comparing the configurations of the polymer systems one
must remember that the snapshots were taken at different
densities, which is clearly visible as the percolation thresh-
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Fig. 5. Snapshots of the athermal system at the percolation thresh-
old for chains N = 50: chains (a) and clusters (b). The percolation

cluster is marked in black while all remaining clusters are in red

old changes here from 0.375 (the athermal case) to 0.348
(T = 1). The differences in polymer concentrations are vis-
ible but one can see in Figs. 5(a)–7(a) chains collapsed and
partially collapsed at lower temperature and full collapsed
ones at low temperature (although even collapsed chains can
interpenetrate). The size of chains decreases with strength
of the polymer-polymer attraction (or increases with the
temperature), which confirms changes presented in Fig. 4.
Figs. 5(b)–7(b) present percolation clusters for the same con-
figurations as presented in Figs. 5(a)–7(a). Percolation clus-

Fig. 6. Snapshots of the system at the percolation threshold for
chains N = 50 at T = 3.33: chains (a) and clusters (b). The per-
colation cluster is marked in black while all remaining clusters

are in red

ters are the largest among other clusters and their size in-
creases considerably with the chain length and decreases
during the annealing. One can also observe the presence of
non-percolated islands inside the percolation cluster and the
decreasing number of these non-percolating islands while
going towards lower temperature. It should be noted that in
lattice models the mobility of collapsed structures is lim-
ited and therefore further studies should also be employed
to other models and simulation tools.
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Fig. 7. Snapshots of the system at the percolation threshold for
chains N = 50 at T = 1: chains (a) and clusters (b). The per-
colation cluster is marked in black while all remaining clusters

are in red

IV. CONCLUSIONS

A simple polymer model was developed in order to
study the influence of the temperature on the percolation in
systems containing linear flexible macromolecules. In this
model the polymer chains were represented by sequences
of identical beads and the positions of these beads were re-
stricted to vertices of a square lattice. One-parameter simple
potential of interaction between polymer beads was assumed

in order to introduce the temperature into the system. Dy-
namic Monte Carlo simulations with a Metropolis-like algo-
rithm were performed in order to determine the properties of
the model.

The application of a dynamic Monte Carlo simulation
method allowed efficient studies of the percolation in the
system of flexible chains, which was almost impossible us-
ing the RSA method. Our results indicate that the percola-
tion threshold for polymers with attractive potential behave
in a different way comparing to the athermal case. The per-
colation threshold decreases for shorter chains only and this
decrease is rather rapid. It appeared that for longer chains the
percolation threshold almost does not depend on the chain
length. The thresholds decrease during the annealing due to
compact and more spherical chains at these conditions. Per-
colation clusters are more dense and smaller at lower temper-
atures although their densities are considerably lower com-
paring to those of single chains.
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