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Short discussion of static properties
of dense polymer melts in two dimensions

– CMA Monte Carlo Simulation vs Molecular Dynamics
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E-mail: piotr.polanowski@p.lodz.pl

2 Department of Man-Made Fibres
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Abstract: In this paper we present the results of an extensive Monte Carlo lattice simulation of two dimensional dense
athermal polymer solutions using the Cooperative Motion Algorithm (CMA). Simulations were performed for a wide range
of polymer chain lengthN which varies from 32 to 1024 and for high concentration of polymer. Our results were compared
with those obtained by means of molecular dynamics [1].
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I. INTRODUCTION

Behavior of polymer chains in two dimensional systems
has been attracting considerable interest in the recent years
[2–9]. It is important for understanding of the properties of
macromolecules strongly adsorbed on surfaces, including bi-
ological systems and nucleic acids. It may also be considered
as a limiting case of ultrathin polymer films. The case of two
dimensional athermal polymer solution is also very interest-
ing from the point of view of polymer physics. This results
from strong excluded volume interaction which leads to be-
havior that cannot be observed in the three dimensional case.

There was a controversy in the literature about the be-
havior of long chains in 2D systems. De Gennes suggested
that, as the chains in 2D cannot interpenetrate, at high con-
centrations they should adopt disc-like conformation with

other chains being practically excluded from a surface oc-
cupied by a given coil [10]. However, computer simula-
tions did not confirm such effect, although it should be
noted that the simulated chains were not very long [2, 7, 8].
In their article, H. Meyer et al. [1] have presented static prop-
erties of a dense polymer system in two dimensions, ob-
tained using molecular dynamics simulations. We note that
the main result is that the intramolecular structure factor
F (q) = 1

N

∑N
n,m=1 〈exp [i~q · (~rn − ~rm)]〉 shows a chain

length dependent slope, smaller than −2 expected for Gaus-
sian chains. In the Kratky representation it reveals a strong
nonmonotonous behavior. These results do not agree with
theoretical predictions and are not reproduced by other sim-
ulation methods [10–14]. Carmesin and Kremer [14] (using
the bond fluctuation method) obtained for very similar poly-
mer concentration, for chains up to 100 beads slopes equal to
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−2 or even bigger. As shown below also using the Coopera-
tive Motion Algorithm (CMA) [11, 12], in Kratky represen-
tation we do not see any deviation from the Debye formula
for chain of length 32–1024 in dense system, which indi-
cates that the shape of chains does not show any deviation
from the Gaussian shape.

II. CMA SIMULATION METHOD

We consider a two-dimensional system composed of
flexible polymer chains immersed in a solvent. The solvent
is essentially a monomeric solvent in which the solvent par-
ticles have a similar size to the monomers on the polymer.

In the simulations using the CMA ensembles of beads
located at lattice sites are connected by non-breakable bonds
to form structures representing macromolecules of various
topology [11–13], all the lattice sites are occupied in order
to represent dense systems like polymer melts. The presented
results are obtained by simulations on a triangular lattice.
The coordination number of the lattice is equal to 6, i.e. ev-
ery monomer has 6 nearest neighbors.

The systems are considered under the excluded volume
condition, which means that each lattice site can only be oc-
cupied by a single molecular element (chain bead or solvent
particle). In such systems strictly cooperative dynamics is
used, consisting in random rearrangements satisfying local
continuity of the simulated system (no empty lattice sites are
generated). A segment of one chain can move only if other
segments of different chains move simultaneously. This is
realized by local motions consisting of displacements of
a certain number of molecular elements along closed loops,
so that each element replaces one of its neighbors in such
a way that the sum of displacements of the elements tak-
ing part in the rearrangement is zero (continuity condition).
During such rearrangements the model macromolecules un-
dergo conformational transformations, however preserving
their identities given by the number and the sequences of
elements in the polymer. Quantities characterizing the sys-
tem are calculated only between cooperative rearrangement
steps. A time step corresponds to the number of simula-
tions steps after which an average of one attempt to move
each bead was made. More details about the algorithm used
are given elsewhere [11, 12]. Here we only describe sim-
ulation systems. We consider a two-dimensional system of
flexible polymer chains. Simulations were performed on tri-
angular lattice consisting of 256×256 beads for chain length
N = 32 . . . 256 and 512 × 512 beads for chain lengths
N = 512, 1024 i.e. the simulation boxes were much big-
ger than the average end-to-end distance of the longest simu-
lated chains. Periodic boundary conditions were employed in
all directions. In lattice simulations the polymer concentra-
tion φ is usually defined as the ratio of the sites occupied by
the polymer beads to the total number of lattice sites. Thus
φ = 1 means that all the sites are occupied by the poly-

mer beads. In our case one can also define concentration in
another way which will better correspond to the results ob-
tained in [1], namely as the ratio of the sum of the surface of
the circles representing polymer monomers to the total area
of the regarded system. It means that the maximum concen-
tration available corresponds to close packing of circles so it
is equal to ca. 0.9069. The concentration based on this defi-
nition will be denoted by Φ.

III. RESULTS

To show that the computations performed using CMA
make sense for a 2D dense system, let us check how the size
of chains scales with chain length N and polymer concen-
tration. Fig. 1 exhibits the behavior of a mean square radius
of gyration
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as a function of polymer concentration φ ≥ 0.7 for various
chain lengths N = 32, . . . , 1024. One can observe that in all
cases in the regarded region these quantities scale accord-
ingly to the scaling prediction [5]〈

R2
g

〉
∝
〈
R2

ee

〉
∝ φ(1−2ν)/(dν−1) , (3)

where d is the spatial dimension of the system and ν is the
scaling exponent taken from the relation

Fig. 1. Concentration dependencies of the mean square end-to-end
distance R2

ee (a) and mean square radius of gyration R2
g (b) for var-

ious chain length plotted vs. polymer concentration φ ≥ 0.7. Solid
lines represent slopes −1 related to scaling in dense regime
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Fig. 2. Mean square end-to-end distance R2
ee (open symbols) and

mean square radius of gyrationR2
g (solid symbols) plotted vs. chain

length. Dashed line indicate slope 1.0 in dense system in two di-
mensions as the ratio of sum of the surface of the circles represent-

ing polymer monomers to the total area of the regarded system
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The behavior of the end-to-end distance and the radius of
gyration of chains as a function of chain length for various
concentration of polymer is shown in Fig. 2. Both quan-
tities scale in the regarded concentration range closely to
2v ∼ 1.0, which is a generally accepted result.

Tab. 1 shows some conformational properties for vari-
ous polymer concentration in the dense regime compared
with the corresponding data from [1]. Generally the results
obtained by CMA are similar to the results obtained by
H. Meyer et al. but asphericity and aspect ratio 〈λ1〉 / 〈λ2〉
are slightly lower than presented in [1] for the concentra-
tion used in their simulations i.e. 7/8 = 0.875. It suggests
that in the CMA case shape of chain is more compact and
more similar to a circle, but the differences seem not so
drastic. Figs. 3(a) and 3(c) present unscaled structure factor
F (q) as a function of wave vector q for chain length N =
= 32, 256 and 1024 (for clarity we show only three curves)
and concentrations φ = 0.95 and φ = 1.0 (Φ = 0.861
and Φ = 0.907) whose value is close to the concentration
regarded in [1]. F (q) is constant for very small wave vec-
tors, as expected. It decreases in an intermediate wave vector
range (Rg << 1/q << 1) and for q >> 1 shows a maxi-
mum related to the lattice structure (“Bragg peak”). In con-
trast to the results obtained in [1] the results obtained by us

do not show any dependency on chain length in the interme-
diate wave vector regime. Moreover, in all cases the power-
law exponent −2 (indicated by the dotted line) confirms that
the statistic of chains is Gaussian and the chains exhibits be-
havior postulated in [2, 9, 14]. These results show that in our
case the chains are self-similar, i.e. segments of long chains
are packed in the same manner as those chains and the frac-
tal dimension does not depend on chain length. Meier et al.
argue in the introduction and in part III A that their chains
are self-similar which, however, seems to be in contradiction
with the chain length dependence observed in their Fig. 13
where the slope and thus the fractal dimension depend on
chain length.

For better observation of the asymptotic power-law ex-
ponent we replotted our data from Fig. 3(a, c) in Fig. 3(b, d)
using the Kratky representation (similarly like Meyer et al.)

Fig. 3. (a, c) Intramolecular structure factor F (q) as a function of
wave vector q for different chain length as indicated. To character-
ize the decay in the intermediate wave vector regime our data are
compared to power-law exponent −2 (dashed line). (b, d) Kratky
representation of the structure factor F (q) tracing y = [F (q) /N ] ·
· [qRg (N)]2 as a function of reduced wave vector qRg (N) for
different N using the symbols as in Fig. 3 (a, c). The Debye for-
mula is indicated by the thick solid line. (a, b) concentration 0.95

(Φ = 0.861 (c, d) concentration 1.0 (Φ = 0.907)
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Tab. 1. Comparison of conformational parameters for various polymer concentrations and chain lengths. The second column contains
concentrations of the polymer as a fraction of lattice sites occupied by polymer beads.. The third column contains concentration as fraction
of the surface covered by closely packed circles representing polymer beads. The asphericity of the chains is characterized by the aspect

ratio 〈λ1〉 / 〈λ2〉 and moment ∆2 of the eigenvalues λ1 and λ2 of the inertia tensor

N φ Φ Rg Ree R2
ee/R

2
g 〈λ1〉 / 〈λ2〉 ∆2

32

0.70 0.635 3.36 8.14 5.87 4.55 0.53

0.80 0.726 3.23 7.74 5.74 4.47 0.52

0.90 0.816 3.11 7.39 5.63 4.41 0.52

0.95 0.861 3.06 7.23 5.59 4.39 0.52

1.00 0.907 3.00 7.07 5.55 4.38 0.51

Ref. [1] 0.875 3.40 8.10 5.70 4.90 0.56

64

0.70 0.635 5.02 11.92 5.65 4.58 0.53

0.80 0.726 4.77 11.26 5.56 4.51 0.53

0.90 0.816 4.56 10.68 5.49 4.47 0.53

0.95 0.861 4.46 10.43 5.46 4.45 0.52

1.00 0.907 4.37 10.19 5.43 4.43 0.52

Ref. [1] 0.875 5.00 11.70 5.40 4.70 0.54

128

0.7 0.635 7.32 17.14 5.48 4.52 0.53

0.8 0.726 6.92 16.14 5.44 4.49 0.53

0.9 0.816 6.58 15.27 5.39 4.46 0.53

0.95 0.861 6.43 14.89 5.37 4.45 0.52

1 0.907 6.28 14.53 5.36 4.43 0.52

Ref. [1] 0.875 7.20 16.70 5.40 4.60 0.54

256

0.7 0.635 10.52 24.31 5.34 4.42 0.52

0.8 0.726 9.93 23.02 5.37 4.45 0.53

0.9 0.816 9.41 21.69 5.32 4.41 0.52

0.95 0.861 9.18 21.18 5.33 4.41 0.52

1 0.907 8.96 20.63 5.30 4.42 0.52

Ref. [1] 0.875 10.30 23.80 5.30 4.50 0.53

512

0.7 0.635 15.01 34.42 5.23 4.47 0.53

0.8 0.726 14.10 32.25 5.23 4.34 0.51

0.9 0.816 13.37 30.65 5.25 4.37 0.52

0.95 0.861 13.02 29.96 5.20 4.40 0.52

1 0.907 12.70 29.16 5.27 4.33 0.52

Ref. [1] 0.875 14.70 34.00 5.30 4.50 0.53

1024

0.7 0.635 21.33 47.38 4.93 4.41 0.52

0.8 0.726 20.22 45.82 5.13 4.45 0.52

0.9 0.816 18.77 42.56 5.14 4.34 0.51

0.95 0.861 18.33 41.87 5.22 4.31 0.51

1 0.907 17.87 40.50 5.14 4.25 0.50

Ref. [1] 0.875 20.80 48.20 5.30 4.50 0.52
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Fig. 4. (a) Intramolecular structure factor F (q) as a function of
wave vector q for chain length 1024 and different concentrations
in dense regime as indicated. (b) Kratky representation of the struc-

ture factor F (q) corresponding to Fig. 4(a)

with vertical axis y = [F (q) /N ] · [qRg (N)]
2, using

the measured radius of gyration Rg (N) given in Tab. 1.
We would like to underline that our results exhibit an excel-
lent agreement with the Debye formula for Gaussian chains
[15] (thick solid line) in all qRg (N) range below the Bragg
peak. Fig. 4(a) depicts F (q) and Kratky plot for chain length
1024 and various concentration (φ = 0.7 . . . 1.0) of poly-
mer in dense system. One can observe that the results ob-
tained for various concentration are very similar. It is con-
nected with the fact that in dense region the exponent 2ν
from Eq. (4) becomes close to −1 and changes very weakly
with increasing polymer concentration [16].

Fig. 5. A typical snapshot of the simulated system. Chain length
1024, φ = 1.0 (Φ = 0.907). A part of a much bigger simulation

box is shown

Fig. 5 shows a typical snapshot of the simulated sys-
tem. It looks very similar to Fig. 1 in [1]. It should be noted
that in both images beside the compact disc-like chains we
found chains which have two or more compact parts joined
by a thin segment. Contribution of such chains gives signifi-
cant mean asphericity in both cases.

IV. CONCLUSION

In summary, it is hard to say why simulations which
yield similar values of chain size and asphericity and simi-
lar snapshots give qualitatively different predictions for scat-
tering experiments. The arguments concerning the compact
structure of scattering objects and applicability of Porod the-
ory should apply to short and long chains and to simula-
tions using other methods. In the future it will probably be
determined by an experiment whose result obtained by us
and others groups or in [1] is correct. In [1] the simulations
were made for only one concentration and the system relax-
ation procedure may be not sufficient for the longest chains.
It should be noted that the results describing the geometries
of chains obtained in both cases (CMA and MD, collected in
Tab. 1) are very similar. This indicates that very subtle differ-
ences in the geometry of the chain can lead to very different
results in scattering factors, which may be an important indi-
cation for the people performing this kind of measurements.
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