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Abstract: This memoir honors the late Berni Julian Alder, who inspired both of us with his pioneering development of
molecular dynamics. Berni’s work with Tom Wainwright, described in the 1959 Scientific American [1], brought Bill to
interview at Livermore in 1962. Hired by Berni, Bill enjoyed over 40 years’ research at the Laboratory. Berni, along with
Edward Teller, founded UC’s Department of Applied Science in 1963. Their motivation was to attract bright students
to use the laboratory’s unparalleled research facilities. In 1972 Carol was offered a joint LLNL employee-DAS student
appointment at Livermore. Bill, thanks to Berni’s efforts, was already a Professor there. Berni’s influence was directly
responsible for our physics collaboration and our marriage in 1989. The present work is devoted to two early interests of
Berni’s, irreversibility and shockwaves. Berni and Tom studied the irreversibility of Boltzmann’s “H function” in the early
1950s [2]. Berni called shockwaves the “most irreversible” of hydrodynamic processes [3]. Just this past summer, in sim-
ulating shockwaves with time-reversible classical mechanics, we found that reversed Runge-Kutta shockwave simulations
yielded nonsteady rarefaction waves, not shocks. Intrigued by this unexpected result we studied the exponential Lyapunov
instabilities in both wave types. Besides the Runge-Kutta and Leapfrog algorithms, we developed a precisely-reversible
manybody algorithm based on trajectory storing, just changing the velocities’ signs to generate the reversed trajectories.
Both shocks and rarefactions were precisely reversed. Separate simulations, forward and reversed, provide interesting ex-
amples of the Lyapunov-unstable symmetry-breaking models supporting the Second Law of Thermodynamics. We describe
promising research directions suggested by this work.
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I. INTRODUCTION

Bill began to work with Berni in the fall of 1962. Over
the next six years they published six joint works [4–9], in-
cluding one each with three coauthors: Francis Ree, Tom
Wainwright, and Dave Young. All six works were moti-
vated by Berni’s longstanding interest in understanding melt-
ing transitions for disks and spheres. The titles give an idea
of their joint research: “Cooperative Motion of Hard Disks
Leading to Melting” [4]; “Dependence of Lattice Gas Prop-
erties on Mesh Size” [5]; “Cell Theories for Hard Parti-

cles” [6]; “The Pressure, Collision Rate, and Their Number
Dependence for Hard Disks” [7]; “High-Density Equation of
State and Entropy for Hard Disks and Spheres” [8]; and last
of all a longer review of their work, “Numerical Statistical
Mechanics”, pages 79–113 in Physics of Simple Liquids [9],
edited by three of their friends and colleagues: Neville Tem-
perley, John Rowlinson, and George Rushbrooke. These six
papers can be found in the chronological publications list on
our website, hooverwilliam.info, under “[The 1960s]”.

Besides introducing us to his worldwide colleagues
Berni passed on cogent research advice: understanding is the
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goal; words and pictures are vital to understanding; equa-
tions, not so much; clarity of presentation is essential; of the
three routes to understanding, formalism, experiment, and
computation, at least two of these must be included and com-
pared to make a publication “useful”.

Our goal in the present work is to shed more light on
the connection of time-reversible atomistic dynamics to the
irreversible Second Law of Thermodynamics. It is an exten-
sion of work with a similar title published in 2013 [10]. Back
then, we expressed our motivation:

“The goal we pursue here is improved micro-
scopic understanding of the thermodynamic ir-
reversibility described by the Second Law of
Thermodynamics.”

In Section II we sketch three approaches to the irreversibility
question: [1] the H Theorem, [2] fractal distributions from
thermostatted systems, and [3] time-symmetry breaking
through Lyapunov instability. Section III describes the exam-
ple motivating the present work, a one-dimensional strong
shockwave, simulated with classical manybody molecular
dynamics. The shockwave study led automatically to an
investigation of rarefaction waves. Sections IV and V de-
tail the Lyapunov instabilities of both processes, shock and
rarefaction, in both time directions, “forward” and “back-
ward”. In both cases we develop and apply a novel precisely-
reversible integration algorithm. Section VI describes the
smooth-particle technique for connecting the atomistic and
continuum descriptions of flow problems, applied there to
the measurement of longitudinal and transverse tempera-
tures. A summary follows, in Section VII.

II. THREE EXPLANATIONS
OF DYNAMICAL IRREVERSIBILITY

In 1956 Berni and Tom described several problems in
their Brussels presentation “Molecular Dynamics by Elec-
tronic Computers” [2]. Their evaluation of Boltzmann’s
H Function, the 19th-century explanation of irreversibility,
showed that low-density hard-sphere molecular dynamics
and Boltzmann’s equation agreed quite well. In 1987 a sec-
ond explanation of irreversibility from time-reversible dy-
namics [11] was offered as a consequence of Shuichi Nosé’s
equilibrium thermostat ideas [12, 13] applied to nonequi-
librium problems, following the progress of one- or two-
dimensional particles through arrays of scatterers. The time-
averaged temperature was controlled in the one-dimensional
case [14] and the instantaneous temperature was fixed in the
two-dimensional case [15]. Both these problems supported
a new explanation of irreversibility. Both generated frac-
tal phase-space distributions with fractional dimensionalities
less than that of the phase space. The rarity of nonequi-
librium states, coupled with the exponential instability of

the reversed fractal repellor motion, provided an explanation
more general than Boltzmann’s. Rather than dilute gases the
fractal description applied to a wide variety of liquid and
solid problems [11].

In 2013 we made a third effort to understand irreversibil-
ity for manybody Newtonian systems through a novel mea-
sure of Lyapunov instability [10]. This pervasive instability
can be followed by tracking the rate at which two nearby
trajectories, the “reference” and the “satellite”, tend to sep-
arate, with the distance, but not the direction, between the
two trajectories held fixed. The direction of the reference-
to-satellite vector joining the two manybody trajectories de-
termines which particles contribute most to the instability.
Fig. 1 shows a striking difference between forward and back-
ward analyses of an inelastic collision of two 400-particle
balls [10]. The simulation is purely classical and precisely
time-reversible. Forward in time the satellite particles most
sensitive to instability (black in Fig. 1) are those on the lead-
ing edges, those first to take notice of collision. When pre-
cisely the same trajectory is analyzed backward, with the
800-particle ball spontaneously (and completely unphysi-
cally) separating into its two parts, the “important parti-
cles” are very different. Backward in time such particles are
mostly in the high-strainrate necking region where new sur-
faces are being created. The forward collision is physically
reasonable and can be simulated easily with a variety of inte-
grators and algorithms, all of them leading to similar results.
The reversed process, in which a single ball spontaneously
separates into parts, is a different story, “irreversible”. It can-
not be simulated directly. Instead it can only be studied by
a brute-force numerical reversal of the forward-in-time col-
lision.

Forward Backward

Fig. 1. Two identical snapshots from a “bit-reversible” precisely-
time-reversible Newtonian collision of two solid 400-particle balls
[10]. The important particles forward and backward in time show
that local mechanical instability, not phase volume, is the mecha-

nism for Second Law irreversibility

III. SHOCKWAVES
– THE “MOST IRREVERSIBLE” PROCESSES [3]

A comprehensive 1980 study [16] examined the two
shockwaves, with velocities±us, that result when a periodic
liquid manybody system is suddenly compressed by two pe-
riodic images of itself. The left image advances rightward at
the “piston velocity” +up < us. The right image leftward,
at −up, propelling the faster shock with velocity −us. In the
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space of about two atomic diameters the argon liquid being
modelled increases in pressure to 400 kilobars and in tem-
perature to about ten thousand kelvins. The density increases
approximately twofold.

Fig. 2. Three mechanisms for generating one-dimensional shock-
waves. We use stagnation geometry here. The symmetric mecha-
nism leads to the Hugoniot Relation ∆e = 〈P 〉∆v, where 〈P 〉 is
the average of the cold and hot pressures and ∆v is the difference

of the cold and hot volumes

Here we consider an alternative mechanism for shock
generation, and in two space dimensions rather than three.
See the middle illustration in Fig. 2. We launch a stress-free
cold solid against a fixed barrier at speed u = up. When
complete, this process converts the initial macroscopic ki-
netic energy, (Nu2/2), into the internal energy of the result-
ing hot shocked fluid, Ne. We model the initial cold state
with an N -particle triangular lattice, periodic in y. Each par-
ticle pair interacts with the short-ranged repulsive pair po-
tential, arbitrarily normalized to unity:

φ(r < 1) = (10/π)(1− r)3 ,

φ(r > 1) = 0→
∫ ∞
0

2πrφ(r)dr ≡ 1 .

In the present shockwave work N is either 8192 = 32× 256
or 2048 = 16 × 128 so that the aspect ratio (Lx/Ly), with
close-packed columns of particles parallel to the y axis, is
initially 8

√
(3/4) = 6.9282. The shock propagation direc-

tion is parallel to the x axis.
The initial velocity, 0.97, is selected to shock-compress

the cold solid twofold, to a hot fluid state. To break the
lattice symmetry we begin with additional thermal veloci-
ties corresponding to an otherwise negligible temperature of
0.0001. Fig. 3 shows the coexistence of the hot shocked ma-
terial with the cold stress-free triangular-lattice as modelled
with 8192 particles. The number density ρ increases from√
(4/3) to 2

√
(4/3) and the internal energy change is con-

sistent with the Hugoniot relation for twofold compression
from the stress-free zero-energy cold state to a hot shocked
state with temperature TH = 0.115 :

eH−eC ≡ (1/2)(PH+PC)(vC−vH) [ Hugoniot Relation ] ,

with eC = 0 and PC = 0 and vH = (vC/2) −→
−→ eH = (1/2)PH(vC/2) = (1/2)PHvH ,

so that eH =PH(0.433013/2) = 0.47045 = (0.972/2)→
→ PH = 2.173 .

To derive the Hugoniot relation imagine the cold zero-energy
zero-pressure crystal moving rightward at speed (0.97/2) and
stagnating to match the velocity of a leftmoving wall at ve-
locity (−0.97/2). In this thought experiment the kinetic en-
ergy of the resulting leftmoving hot fluid is identical to that
of the initial cold rightmoving solid, (1/2)(0.97/2)2 per par-
ticle. Evidently the resulting internal energy eH (the energy
exclusive of the macroscopic motion) is identical to the per-
particle work done by the crystal in the compression process,
(PHvH/2) = (0.972/2).

Fig. 3. A one-dimensional leftmoving shockwave. Initially cold
solid at density

√
(4/3) moves rightward at up = 0.97, stag-

nates at a fixed barrier at x = 128
√

(3/4) = 110.85, launches
a twofold-compressed shockwave leftward, at up − us = −0.97.
Colors show original y values. The timesteps in all of these simu-

lations are equal to 0.01

Just as in earlier work [10] simulations show that the
structures of such strong shockwaves are steady and accu-
rately one-dimensional, with a shockwidth on the order of
two particle diameters. In the shock-based coordinate system
(fixed on the stationary shock, as shown in the top view of
Fig. 2) cold crystal enters from the left, with u = us = 2up,
and exits at the right with u = us − up = up = (us/2) =
= 0.97. A time-reversal of this nonequilibrium shock pro-
cess is easily implemented in a Runge-Kutta simulation by
changing the sign of the timestep, dt = 0.01 → dt =
= −0.01, or changing the signs of all the velocities in the
problem.

Figs. 4 and 5 illustrate the surprising result of this
straightforward “reversal”. It motivated the present work.
Rather than seeing the shock travel backward unchanged, at
least for a reasonable time, instead we found that a rarefac-
tion wave soon appears. Such a wave is typically generated
by the nearly isentropic expansion of a compressed fluid and
is discussed in standard fluid mechanics texts [17, 18] for
simple fluid models. An accurate Leapfrog integrator, like-
wise conserving energy throughout the run to an accuracy of
seven digits, produces a similar, likewise surprising, rarefac-
tion. The “reversed motion” generated with either Runge-
Kutta integration or Leapfrog is actually anything but! No-
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tice the holes developing in the reversed solution. To inves-
tigate the mechanism for this convincing failure of algorith-
mic reversibility we turned to an analysis of the Lyapunov
instability of the process. We expected to see an analog of
the symmetry breaking found for two colliding crystallites
as shown in Fig. 1. We will shortly discuss this investiga-
tion, in the next Section, IV. First we remind the reader how
Lyapunov instability is characterized in numerical simula-
tions [19–21].

III. 1. Lyapunov Instability with a Satellite Simulation
The largest Lyapunov exponent identifies that part of

a system in which the mechanics is least stable, with the
highest growth rate of perturbations. It is evaluated in prac-
tice by following the progress of two neighboring trajecto-
ries, the “reference” and the “satellite”, rescaling their sepa-
ration at the end of each timestep. The magnitude of this off-
set – here we use 0.0001 – can be measured in coordinate q,
momentum p, or (q, p) phase space. To carry out a precisely-
reversed simulation one could use either Levesque and
Verlet’s bit-reversible algorithm [22] or our more-nearly-
accurate implementation of one of Milne’s fourth-order al-
gorithms [10]. Both these approaches express the particle
coordinates as (large) integers. Typical force contributions,
ẍdt2 or ÿdt2, become considerably smaller integers, but are
still large relative to unity. Consistent floating-point compu-
tations of the force contributions, truncated to integers, then
provide integer coordinate increments which are identical,
apart from sign, in a pair of precisely-reversed motions.

III. 2. A Simpler Time-Reversed Algorithm
For enhanced accuracy and simplicity we choose here

a simpler time-reversible method of simulation, first storing
an accurate Runge-Kutta reference trajectory for thousands
of timesteps and then separately computing two nearby satel-
lite trajectories, one forward and one reversed. The offset
lengths of both satellite trajectories from the reference are
returned from |δ(t)| to a fixed length δ0 at the completion of
each timestep, giving the instantaneous value of the largest
Lyapunov exponent, λ1(t) ≡ ln(|δ(t)|/δ0)/dt, for small dt,
±0.01 in our simulations. All three trajectories, the refer-
ence and two satellites, are generated with the same Runge-
Kutta integrator. A novel vital detail is that the positions of
the satellite and reference trajectories often straddle a peri-
odic boundary (in the y direction when the wave propagation
direction is parallel to the x axis). To avoid discontinuous
jumps in the vector separating the two solutions it is neces-
sary to detect and correct satellite coordinates which straddle
the boundary, adding or subtracting Ly as the case may be,
resulting in a continuously varying offset vector δ(t).

An interesting consequence of the Lyapunov analysis is
that the (largest) Lyapunov exponent is uniformly positive
in both time directions. Its numerical value is mostly in the
range from 1 to 2 throughout both shockwave and rarefac-
tion wave simulations. Insight into the Lyapunov instability

of the motion comes from identifying which particles con-
tribute most to the offset vector. In a pioneering effort Stod-
dard and Ford [19] calculated the largest Lyapunov exponent
of a Lennard-Jones fluid in 1967, maintaining the offset in
coordinate space.

In 1998, with Kevin Boercker and Harald Posch [23],
Bill simulated a nonequilibrium field-driven manybody par-
ticle flow and followed the largest local Lyapunov expo-
nent, separately and instantaneously, in coordinate space and
momentum space. The two identifications of the exponent’s
“important particles” (those with above-average separations,
δ2x+δ

2
y or δ2px

+δ2py
), were very similar. Nearly all important

particles in coordinate space were also important in momen-
tum space, and vice versa. One could quantify a particle’s
contributions to Lyapunov instability in at least three ways,
in terms of

δ2x + δ2y or δ2px
+ δ2py

or δ2x + δ2y + δ2px
+ δ2py

.

Though different in principle [24], all three measures are in
practice very similar in the particles they emphasize [23].
Figs. 4 and 5 display the result of an important-particle
Lyapunov analysis in coordinate space using the straight-
forward Runge-Kutta integrator, forward for 6000 timesteps
and backward for another 6000, with dt = ±0.01. Here and
in Figs. 6–9 we use 2048 particles rather than 8192 in or-
der better to visualize details on an individual particle scale.
Figs. 4 and 5 make the point quite convincingly that shock-
waves are irreversible, even with very accurate integrators.
Let us clarify the meaning of this observation by storing the
(forward) evolution of the shockwave trajectory and then an-
alyzing it for Lyapunov instability in both time directions.

IV. PRECISELY-REVERSIBLE
SHOCK WAVE ANALYSES

Here Figs. 6 and 7 compare 2048-particle Lyapunov
analyses forward and backward for the precisely-reversible
(as the coordinates and momenta are all stored) simulations
of that “most irreversible” shock process, the process shown
in Fig. 3 for 8192 particles. The configurationally impor-
tant particles have been colored brown in Figs. 4–9. Notice
that only in the reversed direction is the shockwave itself the
maximally unstable portion of the system. Exactly the same
configurations, when analyzed forward in time rather than
backward, show that the shockwave is relatively stable (as
opposed to unstable) at the shockfront. Maximal instabilities
instead occur here and there throughout the hot fluid, in rel-
atively small transient clumps when the propagation is ana-
lyzed forward in time. Similar clump formation was found in
the field-driven motion analyzed in Ref. 23. The difference
in the location of “important particles” (backward in time,
found at the shock, but forward in time, located in distant
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Fig. 4. Runge-Kutta shockwave forward in time. The original cold zero-energy zero-temperature specimen, moving rightward at speed 0.97,
had a length of 128

√
3/4 and a height of 16. There are 2048 particles with an initial nearest-neighbor spacing of unity. The snapshots

taken forward in time correspond to times of 6, 18, 30, 42, and 54. The motion is reversed at time 60

Fig. 5. Reversed Runge-Kutta shockwave breaks up and yields a rarefaction wave. Evidently the reversed shockwave structure is highly
unstable. The times here correspond to those in Fig. 4
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Fig. 6. A precisely reversible shockwave stored during propagation forward in time. Here the coordinates and momenta are stored, matching
Fig. 4. The reversed shockwave structure has been stored for use in Fig. 7

Fig. 7. The stored trajectory of Fig. 6 is played backward, with the velocities reversed. Notice that the important particles, colored brown,
are concentrated near the reversed shockwave, indicating its enhanced instability. After reversal at time 60 time decreases through the

snapshot times of 54, 42, 30, 18, and 6
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Fig. 8. Here and in Fig. 9 snapshots at times of 4, 12, 20, 28, and 36
show that the important particles accumulate in clumps near the left
wall, which feels the recoil pressure reacting to the rarefaction fan’s
motion to the right. Here the original length of the 2048-particle
hot specimen, with temperature 0.115 and density 2

√
(4/3), was

32
√

(2) with height 8
√

(6). Unlike the shockwave problem the
important particles in both time directions occur near the warmer

lefthand boundary

clumps) is a significant positive indication that Lyapunov
analyses of Newtonian mechanics can provide a detailed un-
derstanding of the Second Law of Thermodynamics through
the measurement of local instabilities. By including informa-
tion local in space and time from past history the Lyapunov
offset vectors, {λ1(t± dt)←→ δ1(t)} quantify the simulta-
neous relative instabilities of microscopic motions. The dif-
ference found here between the forward and backward sta-
bility analyses of shocks is qualitative, not just quantitative,
in the shockwave problem. We will come back to this analy-
sis in our Summary section.

V. PRECISELY-REVERSIBLE
RAREFACTION WAVE ANALYSES

In an effort to learn more here, we next generated, ana-
lyzed, and studied the evolution of instability in a rarefac-
tion wave. Apparently the lower-density boundary condi-
tion in the reversed version of Fig. 5 provides an unnec-
essary perturbation of such a wave. To initiate a simpler

Fig. 9. The stored precisely-reversed rarefaction wave of Fig. 8 an-
alyzed backward in time. As before the important particles are col-

ored brown

pure-rarefaction simulation we first carry out an equilibrium
Nosé-Hoover [25] isothermal high-density simulation (2048
particles with ρ = 2

√
(4/3) and T = 0.115). The result-

ing equilibrated hot-fluid sample should allow us to start up
a rarefaction simulation in a density-temperature state simi-
lar to that reached by the shockwave compression in the for-
ward versions of Figs. 4 and 6. Rather than using periodic
boundaries in both the x and y directions, as is usual in equi-
librium situations, here we impose quartic boundary poten-
tials, dx4/4 at the left and right. These two smooth bound-
aries repel those particles venturing a distance dx beyond
the limits x = ±(Lx/2). After equilibration, a rarefaction
wave should result when we release one of the x boundaries.
We choose to release the righthand boundary.

Figs. 8 and 9 compare the forward and backward insta-
bility analyses of the resulting rarefaction wave. To make the
details clear we again use only 2048 particles. The resulting
wave was constructed with a three-step process, first simu-
lating 20000 equilibration timesteps at the high-temperature
high-pressure thermodynamic state reached earlier by shock
compression. Next, the righthand boundary was released
and the resulting expansion followed for 4000 Runge-Kutta
timesteps, a time of 40. Finally, the velocities were reversed
for a time of 40, returning to a close approximation of the ini-
tial high-temperature high-pressure state. This preliminary
investigation surprised us yet again. Expansion (forming
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a rarefaction wave), followed by time reversal, showed no
tendency toward shock formation. Instead the reversed flow
closely approximated the rarefaction configurations. To an-
alyze the motion precisely after equilibration, we followed
and stored the 4000 {x, y, px, py} rarefaction states, analyz-
ing them in both directions so as to see the local “impor-
tant particles”. Figs. 8 and 9 shows the important particles
found in both time directions for the rarefaction wave. Here
the unstable portions of both the forward and the backward
rarefaction flows are all distributed in the hotter denser part
of the wave. It is interesting, and was surprising to us, to see
that reversing a rarefaction wave showed no tendency toward
shockwave formation.

VI. CONTINUUM FIELD VARIABLES
FROM (q, p) PARTICLE INFORMATION

Fig. 10 displays thermodynamic data from the stored for-
ward = backward trajectory of Figs. 8 and 9. The veloci-
ties stored for the latter figure show no essential difference
between the longitudinal and transverse temperatures, indi-
cating that the rarefaction wave is indeed nearly isentropic.
Such a wave provides the chance to measure the isentropic
equation of state over a range of density and temperature.
Let us do so now. We calculate “smoothed” values of the
density and the longitudinal and transverse temperatures,
{ρ(x), Txx(x), Tyy(x)}. To reduce fluctuations for Fig. 10
we use data for 8192 = 128× 64 rather than 2048 particles.
These data are smoothed with a properly normalized one-
dimensional form of Lucy’s short-ranged smooth-particle
weight function [26],

w(x, h) = (5/4hL)(1− 6z2 + 8z3 − 3z4) ,

z ≡ (|x|/h)→
∫ +∞

−∞
dx

∫ +L/2

−L/2

w(x)dy ≡ 1 .

L = Ly is the height of the system. The weight function
vanishes for |x| > h. In the initial hot fluid the 8192-particle
system length was Lx = 128

√
(3/8), reflecting both the

spacing of close-packed triangular-lattice rows and a den-
sity twice the close-packed, ρinitial = 2

√
(4/3) = 2.3094.

The continuum number density at an x grid point ρ(xg) is
given by the integrated density (delta functions) of particles
nearby in their x coordinate, ρ(x):

ρ(xg) ≡
N∑
i

w(xi − xg) '

'
∫ +L/2

−L/2

dy

∫ xg+h

xg−h
w(x− xg)ρ(x)dx .

Fig. 10. Temperatures and Density in a Rarefaction Wave. To re-
duce fluctuations 8192 particles were used. The similarity of the
longitudinal and transverse temperatures is remarkable. The red dot
at the upper right indicates the initial thermodynamic state imposed

by Nosé-Hoover dynamics

The smoothing distributes the influence of each particle over
a region of width 2h in x. The kinetic temperatures are given
by similarly-averaged differences 〈p2〉−〈p〉2 . Fig. 10 shows
these local temperatures as functions of the local density for
a smoothing length h = 3 at the conclusion of the rarefaction
simulation. The plot approximates a straight line from the
origin to the point (ρ, T ) = (2.3094, 0.115). Such a straight
line corresponds to an ideal-gas isentrope, with the product
v × T constant.

VII. SUMMARY AND SUGGESTED
RESEARCH DIRECTIONS

Lyapunov analyses provide atomistic demonstrations
and explanations of the symmetry-breaking instabilities as-
sociated with nonequilibrium states obeying standard clas-
sical mechanics. Developing robust algorithms for station-
ary shock and rarefaction waves is a worthy research goal.
We encourage readers to consider these problems. A re-
search goal stimulated by the present work is to quantify an
instability metric. Such a metric would necessarily depend
upon offset-vector components distinguishing the past from
the future. Such a metric should also be related to entropy
production and the Second Law of Thermodynamics.

A Lyapunov analysis of stationary states, as opposed to
the transients treated here, is highly desirable. Steady-state
shockwave simulations, with particles entering at the left and
exiting at the right, just as in the stationary view of Fig. 2,
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would make it possible to carry out longtime averages of in-
stability properties. Most likely such an approach would as-
sign to each particle in a variable-number system private for-
ward and backward vectors, both offset from the reference
trajectory. These vectors would give pairs of private Lya-
punov exponents, N forward and N backward at any time.
Histories of these pairs could then be averaged to minimize
fluctuations.

The continuum entropy production, depending as it does
on gradients of thermodynamic properties, cannot distin-
guish between the two time directions. On the other hand the
difference between the instability metrics forward and back-
ward in time, because they depend only on their “pasts”, of-
fers the chance better to quantify the relative stability of mo-
tions obeying and disobeying macroscopic thermodynamics.
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William Graham Hoover and Carol Griswold Hoover met at the Lawrence Radiation
Laboratory in Livermore California in 1972. Carol was a student in several courses Bill
taught at the University of California’s Department of Applied Science. In 1988 they began
to work together on a variety of problems in statistical mechanics, molecular dynamics,
and chaos. Their first joint paper, “Negative Lyapunov Exponents for Dissipative Systems”
was published with their longtime colleague from the University of Vienna, Harald Posch.
Bill and Carol married that same year and traveled to Japan for a year’s research leave
with Shuichi Nosé and Toshio Kawai. In 2005, after 17 years of joint work in Livermore
they built a home in Ruby Valley Nevada, continuing their research together, now with
over 90 joint publications and three coauthored books. The most recent one, Microscopic
and Macrosopic Simulation Techniques, summarizes lectures they presented in Kharagpur,
West Bengal in 2016, and was published by World Scientific in 2018.
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